IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v123y2018icp793-805.html
   My bibliography  Save this article

Short-term solar power forecasting considering cloud coverage and ambient temperature variation effects

Author

Listed:
  • Gandoman, Foad H.
  • Abdel Aleem, Shady H.E.
  • Omar, Noshin
  • Ahmadi, Abdollah
  • Alenezi, Faisal Q.

Abstract

The use of solar photovoltaic (PV) systems as green renewable sources for electricity generation in modern power networks is steadily increasing. One of the problems with using PV units in developing countries and small companies is access to a simple model to assess the short-time output of a solar cell. For example, a robust model that is capable of analyzing cloud variations and ambient temperature (important factors impacting the PV output) to assess short-term PV output would be very helpful. This article proposes a new methodology to assess the impacts of these factors on the hourly output power of a PV system. Our results showed that the proposed model has the ability to assess PV output by using the hourly data of cloud and ambient temperature change. To validate the model, the output was compared to results of measurements from PV systems installed in Sanandaj and Rasht cities located in North-West (latitude 35.31 and longitude 47.00) and North (latitude 37.28 and longitude 49.58) Iran, respectively. Also, the standardized root-mean-square error method (nRMSE) was used to validate the high accuracy of the proposed method.

Suggested Citation

  • Gandoman, Foad H. & Abdel Aleem, Shady H.E. & Omar, Noshin & Ahmadi, Abdollah & Alenezi, Faisal Q., 2018. "Short-term solar power forecasting considering cloud coverage and ambient temperature variation effects," Renewable Energy, Elsevier, vol. 123(C), pages 793-805.
  • Handle: RePEc:eee:renene:v:123:y:2018:i:c:p:793-805
    DOI: 10.1016/j.renene.2018.02.102
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118302465
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.02.102?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sabziparvar, Ali A. & Shetaee, H., 2007. "Estimation of global solar radiation in arid and semi-arid climates of East and West Iran," Energy, Elsevier, vol. 32(5), pages 649-655.
    2. Gandoman, Foad H. & Raeisi, Fatima & Ahmadi, Abdollah, 2016. "A literature review on estimating of PV-array hourly power under cloudy weather conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 579-592.
    3. Albizzati, Enrique D. & Rossetti, Germán H. & Alfano, Orlando M., 1997. "Measurements and predictions of solar radiation incident on horizontal surfaces at Santa Fe, Argentina (31° 39′S, 60° 43′W)," Renewable Energy, Elsevier, vol. 11(4), pages 469-478.
    4. Perpiña Castillo, Carolina & Batista e Silva, Filipe & Lavalle, Carlo, 2016. "An assessment of the regional potential for solar power generation in EU-28," Energy Policy, Elsevier, vol. 88(C), pages 86-99.
    5. Claudio Monteiro & Tiago Santos & L. Alfredo Fernandez-Jimenez & Ignacio J. Ramirez-Rosado & M. Sonia Terreros-Olarte, 2013. "Short-Term Power Forecasting Model for Photovoltaic Plants Based on Historical Similarity," Energies, MDPI, vol. 6(5), pages 1-20, May.
    6. Pérez-Higueras, P.J. & Rodrigo, P. & Fernández, E.F. & Almonacid, F. & Hontoria, L., 2012. "A simplified method for estimating direct normal solar irradiation from global horizontal irradiation useful for CPV applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5529-5534.
    7. Sepasi, Saeed & Reihani, Ehsan & Howlader, Abdul M. & Roose, Leon R. & Matsuura, Marc M., 2017. "Very short term load forecasting of a distribution system with high PV penetration," Renewable Energy, Elsevier, vol. 106(C), pages 142-148.
    8. Larson, David P. & Nonnenmacher, Lukas & Coimbra, Carlos F.M., 2016. "Day-ahead forecasting of solar power output from photovoltaic plants in the American Southwest," Renewable Energy, Elsevier, vol. 91(C), pages 11-20.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Llinet Benavides Cesar & Rodrigo Amaro e Silva & Miguel Ángel Manso Callejo & Calimanut-Ionut Cira, 2022. "Review on Spatio-Temporal Solar Forecasting Methods Driven by In Situ Measurements or Their Combination with Satellite and Numerical Weather Prediction (NWP) Estimates," Energies, MDPI, vol. 15(12), pages 1-23, June.
    2. Diane Palmer & Richard Blanchard, 2021. "Evaluation of High-Resolution Satellite-Derived Solar Radiation Data for PV Performance Simulation in East Africa," Sustainability, MDPI, vol. 13(21), pages 1-24, October.
    3. Sun, Lei & Liu, Tianyuan & Xie, Yonghui & Zhang, Di & Xia, Xinlei, 2021. "Real-time power prediction approach for turbine using deep learning techniques," Energy, Elsevier, vol. 233(C).
    4. Li, Qing & Zhang, Xinyan & Ma, Tianjiao & Jiao, Chunlei & Wang, Heng & Hu, Wei, 2021. "A multi-step ahead photovoltaic power prediction model based on similar day, enhanced colliding bodies optimization, variational mode decomposition, and deep extreme learning machine," Energy, Elsevier, vol. 224(C).
    5. Muhyaddin Rawa & Abdullah Abusorrah & Yusuf Al-Turki & Martin Calasan & Mihailo Micev & Ziad M. Ali & Saad Mekhilef & Hussain Bassi & Hatem Sindi & Shady H. E. Abdel Aleem, 2022. "Estimation of Parameters of Different Equivalent Circuit Models of Solar Cells and Various Photovoltaic Modules Using Hybrid Variants of Honey Badger Algorithm and Artificial Gorilla Troops Optimizer," Mathematics, MDPI, vol. 10(7), pages 1-31, March.
    6. Jiafeng Ren & Haifeng Liang & Yajing Gao, 2019. "Research on Evaluation of Power Supply Capability of Active Distribution Network with Distributed Power Supply with High Permeability," Energies, MDPI, vol. 12(11), pages 1-17, June.
    7. Huang, Songtao & Zhou, Qingguo & Shen, Jun & Zhou, Heng & Yong, Binbin, 2024. "Multistage spatio-temporal attention network based on NODE for short-term PV power forecasting," Energy, Elsevier, vol. 290(C).
    8. Sabadus, Andreea & Blaga, Robert & Hategan, Sergiu-Mihai & Calinoiu, Delia & Paulescu, Eugenia & Mares, Oana & Boata, Remus & Stefu, Nicoleta & Paulescu, Marius & Badescu, Viorel, 2024. "A cross-sectional survey of deterministic PV power forecasting: Progress and limitations in current approaches," Renewable Energy, Elsevier, vol. 226(C).
    9. Zhao, Wei & Zhang, Haoran & Zheng, Jianqin & Dai, Yuanhao & Huang, Liqiao & Shang, Wenlong & Liang, Yongtu, 2021. "A point prediction method based automatic machine learning for day-ahead power output of multi-region photovoltaic plants," Energy, Elsevier, vol. 223(C).
    10. Varga, György & Gresina, Fruzsina & Szeberényi, József & Gelencsér, András & Rostási, Ágnes, 2024. "Effect of Saharan dust episodes on the accuracy of photovoltaic energy production forecast in Hungary (Central Europe)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    11. Putri Nor Liyana Mohamad Radzi & Muhammad Naveed Akhter & Saad Mekhilef & Noraisyah Mohamed Shah, 2023. "Review on the Application of Photovoltaic Forecasting Using Machine Learning for Very Short- to Long-Term Forecasting," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    12. Emilio Porcu & Philip A. White, 2022. "Random fields on the hypertorus: Covariance modeling and applications," Environmetrics, John Wiley & Sons, Ltd., vol. 33(1), February.
    13. Dai, Yeming & Wang, Yanxin & Leng, Mingming & Yang, Xinyu & Zhou, Qiong, 2022. "LOWESS smoothing and Random Forest based GRU model: A short-term photovoltaic power generation forecasting method," Energy, Elsevier, vol. 256(C).
    14. Niu, Yunbo & Wang, Jianzhou & Zhang, Ziyuan & Luo, Tianrui & Liu, Jingjiang, 2024. "De-Trend First, Attend Next: A Mid-Term PV forecasting system with attention mechanism and encoder–decoder structure," Applied Energy, Elsevier, vol. 353(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    2. Younes Noorollahi & Mohammad Mohammadi & Hossein Yousefi & Amjad Anvari-Moghaddam, 2020. "A Spatial-Based Integration Model for Regional Scale Solar Energy Technical Potential," Sustainability, MDPI, vol. 12(5), pages 1-19, March.
    3. Gandoman, Foad H. & Raeisi, Fatima & Ahmadi, Abdollah, 2016. "A literature review on estimating of PV-array hourly power under cloudy weather conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 579-592.
    4. Vrînceanu, Alexandra & Dumitrașcu, Monica & Kucsicsa, Gheorghe, 2022. "Site suitability for photovoltaic farms and current investment in Romania," Renewable Energy, Elsevier, vol. 187(C), pages 320-330.
    5. El-Sebaii, A.A. & Al-Hazmi, F.S. & Al-Ghamdi, A.A. & Yaghmour, S.J., 2010. "Global, direct and diffuse solar radiation on horizontal and tilted surfaces in Jeddah, Saudi Arabia," Applied Energy, Elsevier, vol. 87(2), pages 568-576, February.
    6. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    7. Anilkumar, T.T. & Simon, Sishaj P. & Padhy, Narayana Prasad, 2017. "Residential electricity cost minimization model through open well-pico turbine pumped storage system," Applied Energy, Elsevier, vol. 195(C), pages 23-35.
    8. Verdone, Alessio & Scardapane, Simone & Panella, Massimo, 2024. "Explainable Spatio-Temporal Graph Neural Networks for multi-site photovoltaic energy production," Applied Energy, Elsevier, vol. 353(PB).
    9. Mohsen Beigi & Hossein Beigi Harchegani & Mehdi Torki & Mohammad Kaveh & Mariusz Szymanek & Esmail Khalife & Jacek Dziwulski, 2022. "Forecasting of Power Output of a PVPS Based on Meteorological Data Using RNN Approaches," Sustainability, MDPI, vol. 14(5), pages 1-12, March.
    10. Costa, Suellen C.S. & Diniz, Antonia Sonia A.C. & Kazmerski, Lawrence L., 2018. "Solar energy dust and soiling R&D progress: Literature review update for 2016," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2504-2536.
    11. Palmer, Diane & Gottschalg, Ralph & Betts, Tom, 2019. "The future scope of large-scale solar in the UK: Site suitability and target analysis," Renewable Energy, Elsevier, vol. 133(C), pages 1136-1146.
    12. Wang, Yunjie & Yang, Huihan & Chen, Haifei & Yu, Bendong & Zhang, Haohua & Zou, Rui & Ren, Shaoyang, 2023. "A review: The development of crucial solar systems and corresponding cooling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    13. Marco Rogna, 2019. "A First-Phase Screening Device for Site Selection of Large-Scale Solar Plants with an Application to Italy," BEMPS - Bozen Economics & Management Paper Series BEMPS57, Faculty of Economics and Management at the Free University of Bozen.
    14. Dias, Luís & Gouveia, João Pedro & Lourenço, Paulo & Seixas, Júlia, 2019. "Interplay between the potential of photovoltaic systems and agricultural land use," Land Use Policy, Elsevier, vol. 81(C), pages 725-735.
    15. Aina Maimó-Far & Alexis Tantet & Víctor Homar & Philippe Drobinski, 2020. "Predictable and Unpredictable Climate Variability Impacts on Optimal Renewable Energy Mixes: The Example of Spain," Energies, MDPI, vol. 13(19), pages 1-25, October.
    16. Guo, Qiaozhen & He, Qiao-Chu & Chen, Ying-Ju & Huang, Wei, 2021. "Poverty mitigation via solar panel adoption: Smart contracts and targeted subsidy design," Omega, Elsevier, vol. 102(C).
    17. Di Somma, M. & Graditi, G. & Heydarian-Forushani, E. & Shafie-khah, M. & Siano, P., 2018. "Stochastic optimal scheduling of distributed energy resources with renewables considering economic and environmental aspects," Renewable Energy, Elsevier, vol. 116(PA), pages 272-287.
    18. Khalil, Samy A. & Shaffie, A.M., 2016. "Evaluation of transposition models of solar irradiance over Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 105-119.
    19. Ramos, Carmen & García, Ana Salomé & Moreno, Blanca & Díaz, Guzmán, 2019. "Small-scale renewable power technologies are an alternative to reach a sustainable economic growth: Evidence from Spain," Energy, Elsevier, vol. 167(C), pages 13-25.
    20. Benedek, József & Sebestyén, Tihamér-Tibor & Bartók, Blanka, 2018. "Evaluation of renewable energy sources in peripheral areas and renewable energy-based rural development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 516-535.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:123:y:2018:i:c:p:793-805. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.