IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v236y2024ics0960148124015611.html
   My bibliography  Save this article

Power modeling of degraded PV systems: Case studies using a dynamically updated physical model (PV-Pro)

Author

Listed:
  • Li, Baojie
  • Chen, Xin
  • Jain, Anubhav

Abstract

Power modeling, widely applied for health monitoring and power prediction, is crucial for the efficiency and reliability of Photovoltaic (PV) systems. The most common approach for power modeling uses a physical equivalent circuit model, with the core challenge being the estimation of model parameters. Traditional parameter estimation either relies on datasheet information, which does not reflect the system's current health status, especially for degraded PV systems, or requires additional I-V characterization, which is generally unavailable for large-scale PV systems. Thus, we build upon our previously developed tool, PV-Pro (originally proposed for degradation analysis), to enhance its application for power modeling of degraded PV systems. PV-Pro extracts model parameters from production data without requiring I-V characterization. This dynamic model, periodically updated, can closely capture the actual degradation status, enabling precise power modeling. PV-Pro is compared with popular power modeling techniques, including persistence, nominal physical, and various machine learning models. The results indicate that PV-Pro achieves outstanding power modeling performance, with an average nMAE of 1.4 % across four field-degraded PV systems, reducing error by 17.6 % compared to the best alternative technique. Furthermore, PV-Pro demonstrates robustness across different seasons and severities of degradation. The tool is available as a Python package at https://github.com/DuraMAT/pvpro.

Suggested Citation

  • Li, Baojie & Chen, Xin & Jain, Anubhav, 2024. "Power modeling of degraded PV systems: Case studies using a dynamically updated physical model (PV-Pro)," Renewable Energy, Elsevier, vol. 236(C).
  • Handle: RePEc:eee:renene:v:236:y:2024:i:c:s0960148124015611
    DOI: 10.1016/j.renene.2024.121493
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124015611
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121493?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:236:y:2024:i:c:s0960148124015611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.