IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v118y2018icp879-895.html
   My bibliography  Save this article

Development of a hydraulic stimulation simulator toolbox for enhanced geothermal system design

Author

Listed:
  • Park, Sehyeok
  • Kim, Kwang-Il
  • Kwon, Saeha
  • Yoo, Hwajung
  • Xie, Linmao
  • Min, Ki-Bok
  • Kim, Kwang Yeom

Abstract

Hydraulic stimulation is the key technology in the enhanced geothermal system (EGS) development. In this study, a reservoir stimulation simulator toolbox was developed for the comprehensive EGS design considering the natural fracture distribution, borehole stability, hydraulic stimulation and the thermal performance of the reservoir. The toolbox program consists of five modules, i.e., 3D discrete fracture network (DFN) generation, borehole stability analysis, hydrofracturing estimation, hydroshearing estimation and reservoir temperature prediction. Each module is implemented with graphic user interface using MATLAB® and available as a stand-alone program. The program allows independent analysis of each module and combined analyses with compatible data among the related modules, which provides extensive applicability to a variety of tasks associated with EGS stimulation, shale gas fracturing and CO2 geosequestration.

Suggested Citation

  • Park, Sehyeok & Kim, Kwang-Il & Kwon, Saeha & Yoo, Hwajung & Xie, Linmao & Min, Ki-Bok & Kim, Kwang Yeom, 2018. "Development of a hydraulic stimulation simulator toolbox for enhanced geothermal system design," Renewable Energy, Elsevier, vol. 118(C), pages 879-895.
  • Handle: RePEc:eee:renene:v:118:y:2018:i:c:p:879-895
    DOI: 10.1016/j.renene.2017.11.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117311175
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.11.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xie, Linmao & Min, Ki-Bok & Song, Yoonho, 2015. "Observations of hydraulic stimulations in seven enhanced geothermal system projects," Renewable Energy, Elsevier, vol. 79(C), pages 56-65.
    2. Joseph Abate & Ward Whitt, 2006. "A Unified Framework for Numerically Inverting Laplace Transforms," INFORMS Journal on Computing, INFORMS, vol. 18(4), pages 408-421, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Qarinur & Sho Ogata & Naoki Kinoshita & Hideaki Yasuhara, 2020. "Predictions of Rock Temperature Evolution at the Lahendong Geothermal Field by Coupled Numerical Model with Discrete Fracture Model Scheme," Energies, MDPI, vol. 13(12), pages 1-23, June.
    2. Xu, Haoran & Cheng, Jingru & Zhao, Zhihong & Lin, Tianyi & Liu, Guihong & Chen, Sicong, 2021. "Coupled thermo-hydro-mechanical-chemical modeling on acid fracturing in carbonatite geothermal reservoirs containing a heterogeneous fracture," Renewable Energy, Elsevier, vol. 172(C), pages 145-157.
    3. Qiao, Mingzheng & Jing, Zefeng & Feng, Chenchen & Li, Minghui & Chen, Cheng & Zou, Xupeng & Zhou, Yujuan, 2024. "Review on heat extraction systems of hot dry rock: Classifications, benefits, limitations, research status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    4. Jingxuan Zhang & Xiangjun Liu & Xiaochen Wei & Lixi Liang & Jian Xiong & Wei Li, 2019. "Uncertainty Analysis of Factors Influencing Stimulated Fracture Volume in Layered Formation," Energies, MDPI, vol. 12(23), pages 1-24, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sokolov, Andrey & Melatos, Andrew & Kieu, Tien, 2010. "Laplace transform analysis of a multiplicative asset transfer model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(14), pages 2782-2792.
    2. A. Baykal Hafızoğlu & Esma S. Gel & Pınar Keskinocak, 2013. "Expected Tardiness Computations in Multiclass Priority M / M / c Queues," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 364-376, May.
    3. Dassios, Angelos & Li, Luting, 2020. "Explicit asymptotic on first passage times of diffusion processes," LSE Research Online Documents on Economics 103087, London School of Economics and Political Science, LSE Library.
    4. Dassios, Angelos & Qu, Yan & Zhao, Hongbiao, 2018. "Exact simulation for a class of tempered stable," LSE Research Online Documents on Economics 86981, London School of Economics and Political Science, LSE Library.
    5. David Landriault & Bin Li & Hongzhong Zhang, 2014. "On the Frequency of Drawdowns for Brownian Motion Processes," Papers 1403.1183, arXiv.org.
    6. Leippold, Markus & Vasiljević, Nikola, 2017. "Pricing and disentanglement of American puts in the hyper-exponential jump-diffusion model," Journal of Banking & Finance, Elsevier, vol. 77(C), pages 78-94.
    7. Illés Horváth & András Mészáros & Miklós Telek, 2020. "Numerical Inverse Transformation Methods for Z-Transform," Mathematics, MDPI, vol. 8(4), pages 1-18, April.
    8. Runhuan Feng & Hans W. Volkmer, 2015. "Conditional Asian Options," Papers 1505.06946, arXiv.org.
    9. Mor Harchol-Balter, 2021. "Open problems in queueing theory inspired by datacenter computing," Queueing Systems: Theory and Applications, Springer, vol. 97(1), pages 3-37, February.
    10. Pan, Aiqiang & McCartney, John S. & Lu, Lin & You, Tian, 2020. "A novel analytical multilayer cylindrical heat source model for vertical ground heat exchangers installed in layered ground," Energy, Elsevier, vol. 200(C).
    11. Markus Leippold & Nikola Vasiljević, 2020. "Option-Implied Intrahorizon Value at Risk," Management Science, INFORMS, vol. 66(1), pages 397-414, January.
    12. Landriault, David & Shi, Tianxiang, 2015. "Occupation times in the MAP risk model," Insurance: Mathematics and Economics, Elsevier, vol. 60(C), pages 75-82.
    13. Laub, Patrick J. & Salomone, Robert & Botev, Zdravko I., 2019. "Monte Carlo estimation of the density of the sum of dependent random variables," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 161(C), pages 23-31.
    14. Stéphane Robin & Valeri T. Stefanov, 2015. "Detection of Significant Genomic Alterations via Simultaneous Minimal Sojourns at a State by Independent Continuous-time Markov Chains," Methodology and Computing in Applied Probability, Springer, vol. 17(2), pages 479-487, June.
    15. Svetlana Boyarchenko & Sergei Levendorskiu{i}, 2024. "Efficient inverse $Z$-transform and Wiener-Hopf factorization," Papers 2404.19290, arXiv.org, revised May 2024.
    16. Brent Fisher & Mohan Chaudhry, 2014. "Computing the Distribution for the Number of Renewals with Bulk Arrivals," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 885-892, November.
    17. Donatien Hainaut & Yang Shen & Yan Zeng, 2018. "How do capital structure and economic regime affect fair prices of bank’s equity and liabilities?," Annals of Operations Research, Springer, vol. 262(2), pages 519-545, March.
    18. Jewgeni H. Dshalalow & Ryan T. White, 2021. "Current Trends in Random Walks on Random Lattices," Mathematics, MDPI, vol. 9(10), pages 1-38, May.
    19. Xiang, Shuhuang, 2014. "Laplace transforms for approximation of highly oscillatory Volterra integral equations of the first kind," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 944-954.
    20. Qu, Yan & Dassios, Angelos & Zhao, Hongbiao, 2021. "Random variate generation for exponential and gamma tilted stable distributions," LSE Research Online Documents on Economics 108593, London School of Economics and Political Science, LSE Library.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:118:y:2018:i:c:p:879-895. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.