IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v172y2021icp145-157.html
   My bibliography  Save this article

Coupled thermo-hydro-mechanical-chemical modeling on acid fracturing in carbonatite geothermal reservoirs containing a heterogeneous fracture

Author

Listed:
  • Xu, Haoran
  • Cheng, Jingru
  • Zhao, Zhihong
  • Lin, Tianyi
  • Liu, Guihong
  • Chen, Sicong

Abstract

Acid fracturing and hydraulic fracturing are two useful methods to improve productivity of geothermal wells. Compared with hydraulic fracturing, it remains challenging to select and design an optimal scheme of acid fracturing in geotherm reservoirs due to the complex chemical reactions between acidizing fluids and reservoir rocks. A modeling framework for the coupled thermal-hydro-mechanical-chemical processes during acid fracturing in carbonatite geothermal reservoirs is developed, which is verified using the published experimental results. Effects of natural and human-controlled factors on efficiency of acid fracturing are investigated through parameter sensitivity analysis. The results show that the two human-controlled parameters including acid concentration and injection rate play an important role in determining propagation area, whereas the acid etching pattern is mainly dependent on natural reservoir parameters including aperture field, reservoir temperature and in-situ stress. The developed modeling framework is successfully applied to simulate a field test of acid fracturing in a geothermal well, Beijing, China. The further follow-up research and limitations of the present study are also addressed.

Suggested Citation

  • Xu, Haoran & Cheng, Jingru & Zhao, Zhihong & Lin, Tianyi & Liu, Guihong & Chen, Sicong, 2021. "Coupled thermo-hydro-mechanical-chemical modeling on acid fracturing in carbonatite geothermal reservoirs containing a heterogeneous fracture," Renewable Energy, Elsevier, vol. 172(C), pages 145-157.
  • Handle: RePEc:eee:renene:v:172:y:2021:i:c:p:145-157
    DOI: 10.1016/j.renene.2021.03.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121003773
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.03.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Park, Sehyeok & Kim, Kwang-Il & Kwon, Saeha & Yoo, Hwajung & Xie, Linmao & Min, Ki-Bok & Kim, Kwang Yeom, 2018. "Development of a hydraulic stimulation simulator toolbox for enhanced geothermal system design," Renewable Energy, Elsevier, vol. 118(C), pages 879-895.
    2. Xie, Linmao & Min, Ki-Bok & Song, Yoonho, 2015. "Observations of hydraulic stimulations in seven enhanced geothermal system projects," Renewable Energy, Elsevier, vol. 79(C), pages 56-65.
    3. Liu, Guihong & Pu, Hai & Zhao, Zhihong & Liu, Yanguang, 2019. "Coupled thermo-hydro-mechanical modeling on well pairs in heterogeneous porous geothermal reservoirs," Energy, Elsevier, vol. 171(C), pages 631-653.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aliyu, Musa D. & Archer, Rosalind A., 2021. "A thermo-hydro-mechanical model of a hot dry rock geothermal reservoir," Renewable Energy, Elsevier, vol. 176(C), pages 475-493.
    2. Thomas Heinze & Nicola Pastore, 2023. "Velocity-dependent heat transfer controls temperature in fracture networks," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Li, Shijie & Liu, Jie & Huang, Wanying & Zhang, Chenghang, 2024. "Numerical simulation of the thermo-hydro-chemical coupling in enhanced geothermal systems: Impact of SiO2 dissolution/precipitation in matrix and fractures," Energy, Elsevier, vol. 290(C).
    4. Yu, Ruyang & Zhang, Kai & Ramasubramanian, Brindha & Jiang, Shu & Ramakrishna, Seeram & Tang, Yuhang, 2024. "Ensemble learning for predicting average thermal extraction load of a hydrothermal geothermal field: A case study in Guanzhong Basin, China," Energy, Elsevier, vol. 296(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Ruyang & Zhang, Kai & Ramasubramanian, Brindha & Jiang, Shu & Ramakrishna, Seeram & Tang, Yuhang, 2024. "Ensemble learning for predicting average thermal extraction load of a hydrothermal geothermal field: A case study in Guanzhong Basin, China," Energy, Elsevier, vol. 296(C).
    2. Jalilinasrabady, Saeid & Tanaka, Toshiaki & Itoi, Ryuichi & Goto, Hiroki, 2021. "Numerical simulation and production prediction assessment of Takigami geothermal reservoir," Energy, Elsevier, vol. 236(C).
    3. Jingxuan Zhang & Xiangjun Liu & Xiaochen Wei & Lixi Liang & Jian Xiong & Wei Li, 2019. "Uncertainty Analysis of Factors Influencing Stimulated Fracture Volume in Layered Formation," Energies, MDPI, vol. 12(23), pages 1-24, November.
    4. Yu, Likui & Wu, Xiaotian & Wang, Yadan & Ma, Weiwu & Liu, Gang, 2020. "Stratified rock hydraulic fracturing for enhanced geothermal system and fracture geometry evaluation via effective length," Renewable Energy, Elsevier, vol. 152(C), pages 713-723.
    5. Qiao, Mingzheng & Jing, Zefeng & Feng, Chenchen & Li, Minghui & Chen, Cheng & Zou, Xupeng & Zhou, Yujuan, 2024. "Review on heat extraction systems of hot dry rock: Classifications, benefits, limitations, research status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    6. Muhammad Qarinur & Sho Ogata & Naoki Kinoshita & Hideaki Yasuhara, 2020. "Predictions of Rock Temperature Evolution at the Lahendong Geothermal Field by Coupled Numerical Model with Discrete Fracture Model Scheme," Energies, MDPI, vol. 13(12), pages 1-23, June.
    7. Liang, Xu & Xu, Tianfu & Chen, Jingyi & Jiang, Zhenjiao, 2023. "A deep-learning based model for fracture network characterization constrained by induced micro-seismicity and tracer test data in enhanced geothermal system," Renewable Energy, Elsevier, vol. 216(C).
    8. Isaka, B.L. Avanthi & Ranjith, P.G. & Rathnaweera, T.D. & Perera, M.S.A. & Kumari, W.G.P., 2019. "Influence of long-term operation of supercritical carbon dioxide based enhanced geothermal system on mineralogical and microstructurally-induced mechanical alteration of surrounding rock mass," Renewable Energy, Elsevier, vol. 136(C), pages 428-441.
    9. Gudala, Manojkumar & Govindarajan, Suresh Kumar & Yan, Bicheng & Sun, Shuyu, 2022. "Numerical investigations of the PUGA geothermal reservoir with multistage hydraulic fractures and well patterns using fully coupled thermo-hydro-geomechanical modeling," Energy, Elsevier, vol. 253(C).
    10. Liu, Guihong & Wang, Guiling & Zhao, Zhihong & Ma, Feng, 2020. "A new well pattern of cluster-layout for deep geothermal reservoirs: Case study from the Dezhou geothermal field, China," Renewable Energy, Elsevier, vol. 155(C), pages 484-499.
    11. Li, Shengtao & Wen, Dongguang & Feng, Bo & Li, Fengyu & Yue, Dongdong & Zhang, Qiuxia & Wang, Junzhao & Feng, Zhaolong, 2023. "Numerical optimization of geothermal energy extraction from deep karst reservoir in North China," Renewable Energy, Elsevier, vol. 202(C), pages 1071-1085.
    12. Yu, Likui & Wu, Xiaotian & Hassan, N.M.S. & Wang, Yadan & Ma, Weiwu & Liu, Gang, 2020. "Modified zipper fracturing in enhanced geothermal system reservoir and heat extraction optimization via orthogonal design," Renewable Energy, Elsevier, vol. 161(C), pages 373-385.
    13. Olasolo, P. & Juárez, M.C. & Morales, M.P. & D´Amico, Sebastiano & Liarte, I.A., 2016. "Enhanced geothermal systems (EGS): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 133-144.
    14. Wang, Jiacheng & Zhao, Zhihong & Liu, Guihong & Xu, Haoran, 2022. "A robust optimization approach of well placement for doublet in heterogeneous geothermal reservoirs using random forest technique and genetic algorithm," Energy, Elsevier, vol. 254(PC).
    15. Zhao, Zhihong & Dou, Zihao & Liu, Guihong & Chen, Sicong & Tan, Xianfeng, 2021. "Equivalent flow channel model for doublets in heterogeneous porous geothermal reservoirs," Renewable Energy, Elsevier, vol. 172(C), pages 100-111.
    16. Park, Sehyeok & Kim, Kwang-Il & Kwon, Saeha & Yoo, Hwajung & Xie, Linmao & Min, Ki-Bok & Kim, Kwang Yeom, 2018. "Development of a hydraulic stimulation simulator toolbox for enhanced geothermal system design," Renewable Energy, Elsevier, vol. 118(C), pages 879-895.
    17. Slatlem Vik, Hedda & Salimzadeh, Saeed & Nick, Hamidreza M., 2018. "Heat recovery from multiple-fracture enhanced geothermal systems: The effect of thermoelastic fracture interactions," Renewable Energy, Elsevier, vol. 121(C), pages 606-622.
    18. Babaei, Masoud & Nick, Hamidreza M., 2019. "Performance of low-enthalpy geothermal systems: Interplay of spatially correlated heterogeneity and well-doublet spacings," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    19. Salimzadeh, S. & Grandahl, M. & Medetbekova, M. & Nick, H.M., 2019. "A novel radial jet drilling stimulation technique for enhancing heat recovery from fractured geothermal reservoirs," Renewable Energy, Elsevier, vol. 139(C), pages 395-409.
    20. Kim, Kwang-Il & Min, Ki-Bok & Kim, Kwang-Yeom & Choi, Jai Won & Yoon, Kern-Shin & Yoon, Woon Sang & Yoon, Byungjoon & Lee, Tae Jong & Song, Yoonho, 2018. "Protocol for induced microseismicity in the first enhanced geothermal systems project in Pohang, Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1182-1191.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:172:y:2021:i:c:p:145-157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.