IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v18y2015i06ns0219024915500405.html
   My bibliography  Save this article

Conditional Asian Options

Author

Listed:
  • RUNHUAN FENG

    (Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America)

  • HANS W. VOLKMER

    (Department of Mathematical Sciences, University of Wisconsin — Milwaukee, Milwaukee, Wisconsin, United States of America)

Abstract

Conditional Asian options are recent market innovations, which offer cheaper and long-dated alternatives to regular Asian options. In contrast with payoffs from regular Asian options which are based on average asset prices, the payoffs from conditional Asian options are determined only by average prices above certain threshold. Due to the limited inclusion of prices, conditional Asian options further reduce the volatility in the payoffs than their regular counterparts and have been promoted in the market as viable hedging and risk management instruments for equity-linked life insurance products. There has been no previous academic literature on this subject and practitioners have only been known to price these products by simulations. We propose the first analytical approach to computing prices and deltas of conditional Asian options in comparison with regular Asian options. In the numerical examples, we put to the test some cost-benefit claims by practitioners. As a by-product, the work also presents some distributional properties of the occupation time and the time-integral of geometric Brownian motion during the occupation time.

Suggested Citation

  • Runhuan Feng & Hans W. Volkmer, 2015. "Conditional Asian Options," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(06), pages 1-24.
  • Handle: RePEc:wsi:ijtafx:v:18:y:2015:i:06:n:s0219024915500405
    DOI: 10.1142/S0219024915500405
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219024915500405
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219024915500405?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feng, Runhuan & Volkmer, Hans W., 2014. "Spectral Methods For The Calculation Of Risk Measures For Variable Annuity Guaranteed Benefits," ASTIN Bulletin, Cambridge University Press, vol. 44(3), pages 653-681, September.
    2. Ning Cai & Chenxu Li & Chao Shi, 2014. "Closed-Form Expansions of Discretely Monitored Asian Options in Diffusion Models," Mathematics of Operations Research, INFORMS, vol. 39(3), pages 789-822, August.
    3. Daniel Dufresne, 2000. "Laguerre Series for Asian and Other Options," Mathematical Finance, Wiley Blackwell, vol. 10(4), pages 407-428, October.
    4. M. Schroder & P. Carr, 2003. "Bessel processes, the integral of geometric Brownian motion, and Asian options," Papers math/0311280, arXiv.org.
    5. Zvan, R. & Vetzal, K. R. & Forsyth, P. A., 2000. "PDE methods for pricing barrier options," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1563-1590, October.
    6. Hélyette Geman & Marc Yor, 1993. "Bessel Processes, Asian Options, And Perpetuities," Mathematical Finance, Wiley Blackwell, vol. 3(4), pages 349-375, October.
    7. Kazuyuki Ishiyama, 2005. "Methods for Evaluating Density Functions of Exponential Functionals Represented as Integrals of Geometric Brownian Motion," Methodology and Computing in Applied Probability, Springer, vol. 7(3), pages 271-283, September.
    8. Runhuan Feng, 2014. "A Comparative Study of Risk Measures for Guaranteed Minimum Maturity Benefits by a PDE Method," North American Actuarial Journal, Taylor & Francis Journals, vol. 18(4), pages 445-461, October.
    9. Joseph Abate & Ward Whitt, 2006. "A Unified Framework for Numerically Inverting Laplace Transforms," INFORMS Journal on Computing, INFORMS, vol. 18(4), pages 408-421, November.
    10. Boyle, Phelim & Broadie, Mark & Glasserman, Paul, 1997. "Monte Carlo methods for security pricing," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1267-1321, June.
    11. Stefan Gerhold, 2010. "The Hartman-Watson Distribution revisited: Asymptotics for Pricing Asian Options," Papers 1011.4830, arXiv.org, revised May 2011.
    12. Feng, Runhuan & Volkmer, Hans W., 2012. "Analytical calculation of risk measures for variable annuity guaranteed benefits," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 636-648.
    13. Vadim Linetsky, 2004. "Spectral Expansions for Asian (Average Price) Options," Operations Research, INFORMS, vol. 52(6), pages 856-867, December.
    14. Michael Curran, 1994. "Valuing Asian and Portfolio Options by Conditioning on the Geometric Mean Price," Management Science, INFORMS, vol. 40(12), pages 1705-1711, December.
    15. Klaus Sandmann & J. Aase Nielsen, 2002. "Pricing of Asian exchange rate options under stochastic interest rates as a sum of options," Finance and Stochastics, Springer, vol. 6(3), pages 355-370.
    16. Ning Cai & Steven Kou, 2012. "Pricing Asian Options Under a Hyper-Exponential Jump Diffusion Model," Operations Research, INFORMS, vol. 60(1), pages 64-77, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wensheng Yang & Jingtang Ma & Zhenyu Cui, 2021. "Analysis of Markov chain approximation for Asian options and occupation-time derivatives: Greeks and convergence rates," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(2), pages 359-412, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Runhuan Feng & Hans W. Volkmer, 2015. "Conditional Asian Options," Papers 1505.06946, arXiv.org.
    2. Louis-Pierre Arguin & Nien-Lin Liu & Tai-Ho Wang, 2018. "Most-Likely-Path In Asian Option Pricing Under Local Volatility Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(05), pages 1-32, August.
    3. Dai, Min & Li, Peifan & Zhang, Jin E., 2010. "A lattice algorithm for pricing moving average barrier options," Journal of Economic Dynamics and Control, Elsevier, vol. 34(3), pages 542-554, March.
    4. Lingjiong Zhu, 2015. "Short maturity options for Azéma–Yor martingales," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 2(04), pages 1-32, December.
    5. Gianluca Fusai & Ioannis Kyriakou, 2016. "General Optimized Lower and Upper Bounds for Discrete and Continuous Arithmetic Asian Options," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 531-559, May.
    6. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    7. Boyle, Phelim & Potapchik, Alexander, 2008. "Prices and sensitivities of Asian options: A survey," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 189-211, February.
    8. Runhuan Feng & Hans W. Volkmer, 2013. "An identity of hitting times and its application to the valuation of guaranteed minimum withdrawal benefit," Papers 1307.7070, arXiv.org.
    9. Dan Pirjol & Lingjiong Zhu, 2017. "Asymptotics for the Discrete-Time Average of the Geometric Brownian Motion and Asian Options," Papers 1706.09659, arXiv.org.
    10. Hideharu Funahashi & Masaaki Kijima, 2017. "A unified approach for the pricing of options relating to averages," Review of Derivatives Research, Springer, vol. 20(3), pages 203-229, October.
    11. Runhuan Feng & Pingping Jiang & Hans Volkmer, 2020. "Geometric Brownian motion with affine drift and its time-integral," Papers 2012.09661, arXiv.org.
    12. Dan Pirjol & Lingjiong Zhu, 2023. "Asymptotics for Short Maturity Asian Options in Jump-Diffusion models with Local Volatility," Papers 2308.15672, arXiv.org, revised Feb 2024.
    13. Dan Pirjol & Lingjiong Zhu, 2016. "Short Maturity Asian Options in Local Volatility Models," Papers 1609.07559, arXiv.org.
    14. Feng, Runhuan & Jiang, Pingping & Volkmer, Hans, 2021. "Geometric Brownian motion with affine drift and its time-integral," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    15. Ning Cai & Steven Kou, 2012. "Pricing Asian Options Under a Hyper-Exponential Jump Diffusion Model," Operations Research, INFORMS, vol. 60(1), pages 64-77, February.
    16. Jianqiang Sun & Langnan Chen & Shiyin Li, 2013. "A Quasi‐Analytical Pricing Model for Arithmetic Asian Options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 33(12), pages 1143-1166, December.
    17. Runhuan Feng & Alexey Kuznetsov & Fenghao Yang, 2016. "Exponential functionals of Levy processes and variable annuity guaranteed benefits," Papers 1610.00577, arXiv.org.
    18. Yanhong Zhong & Guohe Deng, 2019. "Geometric Asian Options Pricing under the Double Heston Stochastic Volatility Model with Stochastic Interest Rate," Complexity, Hindawi, vol. 2019, pages 1-13, January.
    19. Jinke Zhou & Xiaolu Wang, 2008. "Accurate closed‐form approximation for pricing Asian and basket options," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(4), pages 343-358, July.
    20. Dan Pirjol & Jing Wang & Lingjiong Zhu, 2017. "Short Maturity Forward Start Asian Options in Local Volatility Models," Papers 1710.03160, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:18:y:2015:i:06:n:s0219024915500405. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.