IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v395y2021ics0096300320308274.html
   My bibliography  Save this article

Geometric Brownian motion with affine drift and its time-integral

Author

Listed:
  • Feng, Runhuan
  • Jiang, Pingping
  • Volkmer, Hans

Abstract

The joint distribution of a geometric Brownian motion and its time-integral was derived in a seminal paper by Yor (1992) using Lamperti’s transformation, leading to explicit solutions in terms of modified Bessel functions. In this paper, we revisit this classic result using the simple Laplace transform approach in connection to the Heun differential equation. We extend the methodology to the geometric Brownian motion with affine drift and show that the joint distribution of this process and its time-integral can be determined by a doubly-confluent Heun equation. Furthermore, the joint Laplace transform of the process and its time-integral is derived from the asymptotics of the solutions. In addition, we provide an application by using the results for the asymptotics of the double-confluent Heun equation in pricing Asian options. Numerical results show the accuracy and efficiency of this new method.

Suggested Citation

  • Feng, Runhuan & Jiang, Pingping & Volkmer, Hans, 2021. "Geometric Brownian motion with affine drift and its time-integral," Applied Mathematics and Computation, Elsevier, vol. 395(C).
  • Handle: RePEc:eee:apmaco:v:395:y:2021:i:c:s0096300320308274
    DOI: 10.1016/j.amc.2020.125874
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320308274
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125874?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alan L. Lewis, 1998. "Applications of Eigenfunction Expansions in Continuous‐Time Finance," Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 349-383, October.
    2. Feng, Runhuan & Volkmer, Hans W., 2014. "Spectral Methods For The Calculation Of Risk Measures For Variable Annuity Guaranteed Benefits," ASTIN Bulletin, Cambridge University Press, vol. 44(3), pages 653-681, September.
    3. Feng, Runhuan & Volkmer, Hans W., 2012. "Analytical calculation of risk measures for variable annuity guaranteed benefits," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 636-648.
    4. Joseph Abate & Ward Whitt, 2006. "A Unified Framework for Numerically Inverting Laplace Transforms," INFORMS Journal on Computing, INFORMS, vol. 18(4), pages 408-421, November.
    5. Joseph Abate & Ward Whitt, 1995. "Numerical Inversion of Laplace Transforms of Probability Distributions," INFORMS Journal on Computing, INFORMS, vol. 7(1), pages 36-43, February.
    6. Vadim Linetsky, 2004. "Spectral Expansions for Asian (Average Price) Options," Operations Research, INFORMS, vol. 52(6), pages 856-867, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elvira Di Nardo & Giuseppe D’Onofrio, 2021. "On the Cumulants of the First Passage Time of the Inhomogeneous Geometric Brownian Motion," Mathematics, MDPI, vol. 9(9), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Runhuan Feng & Pingping Jiang & Hans Volkmer, 2020. "Geometric Brownian motion with affine drift and its time-integral," Papers 2012.09661, arXiv.org.
    2. Runhuan Feng & Hans W. Volkmer, 2015. "Conditional Asian Options," Papers 1505.06946, arXiv.org.
    3. Runhuan Feng & Hans W. Volkmer, 2015. "Conditional Asian Options," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(06), pages 1-24.
    4. Dassios, Angelos & Qu, Yan & Zhao, Hongbiao, 2018. "Exact simulation for a class of tempered stable," LSE Research Online Documents on Economics 86981, London School of Economics and Political Science, LSE Library.
    5. Svetlana Boyarchenko & Sergei Levendorskiu{i}, 2024. "Efficient inverse $Z$-transform and Wiener-Hopf factorization," Papers 2404.19290, arXiv.org, revised May 2024.
    6. J. Li & A. Metzler & R. M. Reesor, 2017. "A structural framework for modelling contingent capital," Quantitative Finance, Taylor & Francis Journals, vol. 17(7), pages 1071-1088, July.
    7. Qu, Yan & Dassios, Angelos & Zhao, Hongbiao, 2021. "Random variate generation for exponential and gamma tilted stable distributions," LSE Research Online Documents on Economics 108593, London School of Economics and Political Science, LSE Library.
    8. Jang, Jiwook & Dassios, Angelos & Zhao, Hongbiao, 2018. "Moments of renewal shot-noise processes and their applications," LSE Research Online Documents on Economics 87428, London School of Economics and Political Science, LSE Library.
    9. Efstathios Avdis & Ward Whitt, 2007. "Power Algorithms for Inverting Laplace Transforms," INFORMS Journal on Computing, INFORMS, vol. 19(3), pages 341-355, August.
    10. Feng, Runhuan & Yi, Bingji, 2019. "Quantitative modeling of risk management strategies: Stochastic reserving and hedging of variable annuity guaranteed benefits," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 60-73.
    11. Yingda Song & Ning Cai & Steven Kou, 2018. "Computable Error Bounds of Laplace Inversion for Pricing Asian Options," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 634-645, January.
    12. Dmitry Davydov & Vadim Linetsky, 2003. "Pricing Options on Scalar Diffusions: An Eigenfunction Expansion Approach," Operations Research, INFORMS, vol. 51(2), pages 185-209, April.
    13. Jori Selen & Brian Fralix, 2017. "Time-dependent analysis of an M / M / c preemptive priority system with two priority classes," Queueing Systems: Theory and Applications, Springer, vol. 87(3), pages 379-415, December.
    14. Runhuan Feng & Alexey Kuznetsov & Fenghao Yang, 2016. "Exponential functionals of Levy processes and variable annuity guaranteed benefits," Papers 1610.00577, arXiv.org.
    15. Feng, Runhuan & Kuznetsov, Alexey & Yang, Fenghao, 2019. "Exponential functionals of Lévy processes and variable annuity guaranteed benefits," Stochastic Processes and their Applications, Elsevier, vol. 129(2), pages 604-625.
    16. Wenlong Hu, 2020. "Risk management of guaranteed minimum maturity benefits under stochastic mortality and regime-switching by Fourier space time-stepping framework," Papers 2006.15483, arXiv.org, revised Dec 2020.
    17. Wentao Hu & Cuixia Chen & Yufeng Shi & Ze Chen, 2022. "A Tail Measure With Variable Risk Tolerance: Application in Dynamic Portfolio Insurance Strategy," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 831-874, June.
    18. Runhuan Feng & Hans W. Volkmer, 2013. "An identity of hitting times and its application to the valuation of guaranteed minimum withdrawal benefit," Papers 1307.7070, arXiv.org.
    19. Richard L. Warr & Cason J. Wight, 2020. "Error Bounds for Cumulative Distribution Functions of Convolutions via the Discrete Fourier Transform," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 881-904, September.
    20. Yera, Yoel G. & Lillo, Rosa E. & Ramírez-Cobo, Pepa, 2019. "Fitting procedure for the two-state Batch Markov modulated Poisson process," European Journal of Operational Research, Elsevier, vol. 279(1), pages 79-92.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:395:y:2021:i:c:s0096300320308274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.