IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v216y2023ics0960148123009606.html
   My bibliography  Save this article

A deep-learning based model for fracture network characterization constrained by induced micro-seismicity and tracer test data in enhanced geothermal system

Author

Listed:
  • Liang, Xu
  • Xu, Tianfu
  • Chen, Jingyi
  • Jiang, Zhenjiao

Abstract

Fracture network developed in hot dry rock (HDR) primarily controls the flow and heat transport in enhanced geothermal system (EGS). Characterization of fracture network in deep geothermal reservoir is among the most challenging tasks. An interpretation framework for explicit delineating complex fracture network is proposed based on induced micro-seismic events, hydraulic stimulation and tracer test data, which are often available in EGS sites. It is processed by (1) the spatial distribution of fracture intensity, size and hydraulic aperture constrained by the hydraulic diffusivity derived from the spatio-temporal distribution of micro-seismic events, (2) numerical models and long short-term memory (LSTM) neural network models for the hydraulic stimulation and tracer test, and (3) parameter inversion model based on the multi-objective Harris hawks optimization (MOHHO) algorithm searching for optimal fracture network parameters minimizing the deviations between model predictions and field observations. This method has been applied to the Habanero EGS site, Australia. The prediction accuracy of the injection wellhead pressure and produced tracer concentration of the inversed micro-seismicity mapping DFN model is improved by 61.16% and 67.35%, respectively, compared with the stochastic DFN model. These results emphasize the importance to integrate induced micro-seismicity monitoring data for the characterization of hydraulically stimulated fracture network.

Suggested Citation

  • Liang, Xu & Xu, Tianfu & Chen, Jingyi & Jiang, Zhenjiao, 2023. "A deep-learning based model for fracture network characterization constrained by induced micro-seismicity and tracer test data in enhanced geothermal system," Renewable Energy, Elsevier, vol. 216(C).
  • Handle: RePEc:eee:renene:v:216:y:2023:i:c:s0960148123009606
    DOI: 10.1016/j.renene.2023.119046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123009606
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Gang & Zhou, Chunwei & Rao, Zhenghua & Liao, Shengming, 2021. "Impacts of fracture network geometries on numerical simulation and performance prediction of enhanced geothermal systems," Renewable Energy, Elsevier, vol. 171(C), pages 492-504.
    2. Pollack, Ahinoam & Mukerji, Tapan, 2019. "Accounting for subsurface uncertainty in enhanced geothermal systems to make more robust techno-economic decisions," Applied Energy, Elsevier, vol. 254(C).
    3. Shi, Yu & Song, Xianzhi & Wang, Gaosheng & Li, Jiacheng & Geng, Lidong & Li, Xiaojiang, 2019. "Numerical study on heat extraction performance of a multilateral-well enhanced geothermal system considering complex hydraulic and natural fractures," Renewable Energy, Elsevier, vol. 141(C), pages 950-963.
    4. Xie, Linmao & Min, Ki-Bok & Song, Yoonho, 2015. "Observations of hydraulic stimulations in seven enhanced geothermal system projects," Renewable Energy, Elsevier, vol. 79(C), pages 56-65.
    5. Gao, Xuefeng & Zhang, Yanjun & Huang, Yibin & Ma, Yongjie & Zhao, Yi & Liu, Qiangbin, 2021. "Study on heat extraction considering the number and orientation of multilateral wells in a complex fractured geothermal reservoir," Renewable Energy, Elsevier, vol. 177(C), pages 833-852.
    6. Xu, Tianfu & Liang, Xu & Xia, Yi & Jiang, Zhenjiao & Gherardi, Fabrizio, 2022. "Performance evaluation of the Habanero enhanced geothermal system, Australia: Optimization based on tracer and induced micro-seismicity data," Renewable Energy, Elsevier, vol. 181(C), pages 1197-1208.
    7. Soltani, M. & Moradi Kashkooli, Farshad & Souri, Mohammad & Rafiei, Behnam & Jabarifar, Mohammad & Gharali, Kobra & Nathwani, Jatin S., 2021. "Environmental, economic, and social impacts of geothermal energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    8. Zhou, Zhou & Jin, Yan & Zeng, Yijin & Zhang, Xudong & Zhou, Jian & Zhuang, Li & Xin, Shunyuan, 2020. "Investigation on fracture creation in hot dry rock geothermal formations of China during hydraulic fracturing," Renewable Energy, Elsevier, vol. 153(C), pages 301-313.
    9. Aghahosseini, Arman & Breyer, Christian, 2020. "From hot rock to useful energy: A global estimate of enhanced geothermal systems potential," Applied Energy, Elsevier, vol. 279(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiao, Mingzheng & Jing, Zefeng & Feng, Chenchen & Li, Minghui & Chen, Cheng & Zou, Xupeng & Zhou, Yujuan, 2024. "Review on heat extraction systems of hot dry rock: Classifications, benefits, limitations, research status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    2. Xiang Gao & Tailu Li & Yao Zhang & Xiangfei Kong & Nan Meng, 2022. "A Review of Simulation Models of Heat Extraction for a Geothermal Reservoir in an Enhanced Geothermal System," Energies, MDPI, vol. 15(19), pages 1-23, September.
    3. Xie, Jingxuan & Wang, Jiansheng, 2022. "Compatibility investigation and techno-economic performance optimization of whole geothermal power generation system," Applied Energy, Elsevier, vol. 328(C).
    4. Wang, Gaosheng & Song, Xianzhi & Shi, Yu & Yang, Ruiyue & Yulong, Feixue & Zheng, Rui & Li, Jiacheng, 2021. "Heat extraction analysis of a novel multilateral-well coaxial closed-loop geothermal system," Renewable Energy, Elsevier, vol. 163(C), pages 974-986.
    5. Wang, Song & Zhou, Jian & Zhang, Luqing & Han, Zhenhua & Kong, Yanlong, 2024. "Numerical insight into hydraulic fracture propagation in hot dry rock with complex natural fracture networks via fluid-solid coupling grain-based modeling," Energy, Elsevier, vol. 295(C).
    6. Zhang, Bo & Guo, Tiankui & Qu, Zhanqing & Wang, Jiwei & Chen, Ming & Liu, Xiaoqiang, 2023. "Numerical simulation of fracture propagation and production performance in a fractured geothermal reservoir using a 2D FEM-based THMD coupling model," Energy, Elsevier, vol. 273(C).
    7. Qiu, Lihua & He, Li & Kang, Yu & Liang, Dongzhe, 2022. "Assessment of the potential of enhanced geothermal systems in Asia under the impact of global warming," Renewable Energy, Elsevier, vol. 194(C), pages 636-646.
    8. Li, Shijie & Liu, Jie & Huang, Wanying & Zhang, Chenghang, 2024. "Numerical simulation of the thermo-hydro-chemical coupling in enhanced geothermal systems: Impact of SiO2 dissolution/precipitation in matrix and fractures," Energy, Elsevier, vol. 290(C).
    9. Xue, Zhenqian & Ma, Haoming & Wei, Yizheng & Wu, Wei & Sun, Zhe & Chai, Maojie & Zhang, Chi & Chen, Zhangxin, 2024. "Integrated technological and economic feasibility comparisons of enhanced geothermal systems associated with carbon storage," Applied Energy, Elsevier, vol. 359(C).
    10. Santos, L. & Dahi Taleghani, A. & Elsworth, D., 2022. "Repurposing abandoned wells for geothermal energy: Current status and future prospects," Renewable Energy, Elsevier, vol. 194(C), pages 1288-1302.
    11. Zheng, Jun & Li, Peng & Dou, Bin & Fan, Tao & Tian, Hong & Lai, Xiaotian, 2022. "Impact research of well layout schemes and fracture parameters on heat production performance of enhanced geothermal system considering water cooling effect," Energy, Elsevier, vol. 255(C).
    12. Li, Xinxin & Li, Chengyu & Gong, Wenping & Zhang, Yanjie & Wang, Junchao, 2023. "Probabilistic analysis of heat extraction performance in enhanced geothermal system based on a DFN-based modeling scheme," Energy, Elsevier, vol. 263(PC).
    13. Guo, Tiankui & Hao, Tong & Chen, Ming & Zhang, Yuelong & Qu, Zhanqing & Jia, Xuliang & Zhang, Wei & Yu, Haiyang, 2023. "Numerical simulation on Geothermal extraction by radial well assisted hydraulic fracturing," Renewable Energy, Elsevier, vol. 210(C), pages 440-450.
    14. Wang, Ling & Jiang, Zhenjiao & Li, Chengying, 2023. "Comparative study on effects of macroscopic and microscopic fracture structures on the performance of enhanced geothermal systems," Energy, Elsevier, vol. 274(C).
    15. Gao, Xiang & Li, Tailu, 2022. "Synergetic characteristics of three-dimensional transient heat transfer in geothermal reservoir combined with power conversion for enhanced geothermal system," Renewable Energy, Elsevier, vol. 192(C), pages 216-230.
    16. Wentao Zhao & Yilong Yuan & Tieya Jing & Chenghao Zhong & Shoucheng Wei & Yulong Yin & Deyuan Zhao & Haowei Yuan & Jin Zheng & Shaomin Wang, 2023. "Heat Production Performance from an Enhanced Geothermal System (EGS) Using CO 2 as the Working Fluid," Energies, MDPI, vol. 16(20), pages 1-16, October.
    17. Aliyu, Musa D. & Archer, Rosalind A., 2021. "A thermo-hydro-mechanical model of a hot dry rock geothermal reservoir," Renewable Energy, Elsevier, vol. 176(C), pages 475-493.
    18. Gao, Xuefeng & Zhang, Yanjun & Cheng, Yuxiang & Huang, Yibin & Deng, Hao & Ma, Yongjie, 2022. "A novel strategy utilizing local fracture networks to enhance CBHE heat extraction performance: A case study of the Songyuan geothermal field in China," Energy, Elsevier, vol. 255(C).
    19. Hu, Xincheng & Banks, Jonathan & Guo, Yunting & Liu, Wei Victor, 2022. "Utilizing geothermal energy from enhanced geothermal systems as a heat source for oil sands separation: A numerical evaluation," Energy, Elsevier, vol. 238(PA).
    20. Zolfaghari, Seyed Mohammad & Soltani, M. & Hosseinpour, Morteza & Nathwani, Jatin, 2023. "Comprehensive analysis of geothermal energy integration with heavy oil upgrading in hot compressed water," Applied Energy, Elsevier, vol. 345(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:216:y:2023:i:c:s0960148123009606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.