IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v115y2018icp1-5.html
   My bibliography  Save this article

Effect of leaching pretreatment on the gasification of wine and vine (residue) biomass

Author

Listed:
  • Link, Siim
  • Arvelakis, Stelios
  • Paist, Aadu
  • Liliedahl, Truls
  • Rosén, Christer

Abstract

Utilization of biomass residues for energetic purposes increases the share of renewables in the total energy balance. Gasification is one of the thermochemical processes that converts solid biomass to valuable gaseous products. Prior to the gasification process, biomass material could be treated to improve the quality or composition of the product gas. Our focus is on fluidized bed gasification of untreated vine and pretreated vine residue and pretreated wine residue. Natural and artificial leaching were used as pretreatment methods. Our results showed that CO and H2 content in the product gas are higher in leached (16.9 and 10.0% respectively) vine residue than in untreated material (14.5 and 7.7% respectively). The naturally leached wine residue was found to have the highest CO content (18.1%) and relatively high H2 content (9.7%) in the product gas, but lower CH4 (1.0%) and CO2 content (5.6%). The results of tar measurements indicated that the leaching pre-treatment lowers the tar content in the evolved product gas, e.g. by 36% in the case of vine residues. As a result, the controlled leaching pretreatment is recommended as an effective way of upgrading the composition of agricultural biomass.

Suggested Citation

  • Link, Siim & Arvelakis, Stelios & Paist, Aadu & Liliedahl, Truls & Rosén, Christer, 2018. "Effect of leaching pretreatment on the gasification of wine and vine (residue) biomass," Renewable Energy, Elsevier, vol. 115(C), pages 1-5.
  • Handle: RePEc:eee:renene:v:115:y:2018:i:c:p:1-5
    DOI: 10.1016/j.renene.2017.08.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117307826
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.08.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chin, K.L. & H'ng, P.S. & Paridah, M.T. & Szymona, K. & Maminski, M. & Lee, S.H. & Lum, W.C. & Nurliyana, M.Y. & Chow, M.J. & Go, W.Z., 2015. "Reducing ash related operation problems of fast growing timber species and oil palm biomass for combustion applications using leaching techniques," Energy, Elsevier, vol. 90(P1), pages 622-630.
    2. Link, Siim & Arvelakis, Stelios & Paist, Aadu & Martin, Andrew & Liliedahl, Truls & Sjöström, Krister, 2012. "Atmospheric fluidized bed gasification of untreated and leached olive residue, and co-gasification of olive residue, reed, pine pellets and Douglas fir wood chips," Applied Energy, Elsevier, vol. 94(C), pages 89-97.
    3. Kaushal, Priyanka & Tyagi, Rakesh, 2017. "Advanced simulation of biomass gasification in a fluidized bed reactor using ASPEN PLUS," Renewable Energy, Elsevier, vol. 101(C), pages 629-636.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesca Demichelis & Francesco Piovano & Silvia Fiore, 2019. "Biowaste Management in Italy: Challenges and Perspectives," Sustainability, MDPI, vol. 11(15), pages 1-21, August.
    2. Rakesh N, & Dasappa, S., 2018. "A critical assessment of tar generated during biomass gasification - Formation, evaluation, issues and mitigation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1045-1064.
    3. Link, Siim & Tran, Khanh-Quang & Bach, Quang-Vu & Yrjas, Patrik & Lindberg, Daniel & Arvelakis, Stelios & Rosin, Argo, 2018. "Catalytic effect of oil shale ash on CO2 gasification of leached wheat straw and reed chars," Energy, Elsevier, vol. 152(C), pages 906-913.
    4. Inayat, Muddasser & Sulaiman, Shaharin A. & Kurnia, Jundika Candra & Shahbaz, Muhammad, 2019. "Effect of various blended fuels on syngas quality and performance in catalytic co-gasification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 252-267.
    5. Mohsin Raza & Abrar Inayat & Ashfaq Ahmed & Farrukh Jamil & Chaouki Ghenai & Salman R. Naqvi & Abdallah Shanableh & Muhammad Ayoub & Ammara Waris & Young-Kwon Park, 2021. "Progress of the Pyrolyzer Reactors and Advanced Technologies for Biomass Pyrolysis Processing," Sustainability, MDPI, vol. 13(19), pages 1-42, October.
    6. Wei, Juntao & Guo, Qinghua & Gong, Yan & Ding, Lu & Yu, Guangsuo, 2020. "Effect of biomass leachates on structure evolution and reactivity characteristic of petroleum coke gasification," Renewable Energy, Elsevier, vol. 155(C), pages 111-120.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Shenghui & Sun, Xiaojing & Liu, Linlin & Du, Jian, 2023. "A full process optimization of methanol production integrated with co-generation based on the co-gasification of biomass and coal," Energy, Elsevier, vol. 267(C).
    2. Wang Lu & Pietro Bartocci & Alberto Abad & Aldo Bischi & Haiping Yang & Arturo Cabello & Margarita de Las Obras Loscertales & Mauro Zampilli & Francesco Fantozzi, 2023. "Dimensioning Air Reactor and Fuel Reactor of a Pressurized CLC Plant to Be Coupled to a Gas Turbine: Part 2, the Fuel Reactor," Energies, MDPI, vol. 16(9), pages 1-16, April.
    3. Kadam, Sambhaji T. & Gkouletsos, Dimitris & Hassan, Ibrahim & Rahman, Mohammad Azizur & Kyriakides, Alexios-Spyridon & Papadopoulos, Athanasios I. & Seferlis, Panos, 2020. "Investigation of binary, ternary and quaternary mixtures across solution heat exchanger used in absorption refrigeration and process modifications to improve cycle performance," Energy, Elsevier, vol. 198(C).
    4. Shibo Wu & Jiannan Chen & Daoping Peng & Zheng Wu & Qin Li & Tao Huang, 2019. "Effects of Water Leaching on the Ash Sintering Problems of Wheat Straw," Energies, MDPI, vol. 12(3), pages 1-14, January.
    5. Ke, Cunfeng & Zhang, Yaning & Gao, Yanan & Pan, Yaoyu & Li, Bingxi & Wang, Yunpu & Ruan, Roger, 2019. "Syngas production from microwave-assisted air gasification of biomass: Part 1 model development," Renewable Energy, Elsevier, vol. 140(C), pages 772-778.
    6. Pontes, Rita & Romaní, Aloia & Michelin, Michele & Domingues, Lucília & Teixeira, José & Nunes, João, 2018. "Comparative autohydrolysis study of two mixtures of forest and marginal land resources for co-production of biofuels and value-added compounds," Renewable Energy, Elsevier, vol. 128(PA), pages 20-29.
    7. Sahar Safarian & Magnus Rydén & Matty Janssen, 2022. "Development and Comparison of Thermodynamic Equilibrium and Kinetic Approaches for Biomass Pyrolysis Modeling," Energies, MDPI, vol. 15(11), pages 1-18, May.
    8. Heredia Salgado, Mario A. & Tarelho, Luís A.C. & Rivadeneira, Daniel & Ramírez, Valeria & Sinche, Danny, 2020. "Energetic valorization of the residual biomass produced during Jatropha curcas oil extraction," Renewable Energy, Elsevier, vol. 146(C), pages 1640-1648.
    9. Ruiz, J.A. & Juárez, M.C. & Morales, M.P. & Muñoz, P. & Mendívil, M.A., 2013. "Biomass gasification for electricity generation: Review of current technology barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 174-183.
    10. AlNouss, Ahmed & Parthasarathy, Prakash & Shahbaz, Muhammad & Al-Ansari, Tareq & Mackey, Hamish & McKay, Gordon, 2020. "Techno-economic and sensitivity analysis of coconut coir pith-biomass gasification using ASPEN PLUS," Applied Energy, Elsevier, vol. 261(C).
    11. Vikram, Shruti & Deore, Sujeetkumar P. & De Blasio, Cataldo & Mahajani, Sanjay M. & Kumar, Sandeep, 2023. "Air gasification of high-ash solid waste in a pilot-scale downdraft gasifier: Experimental and numerical analysis," Energy, Elsevier, vol. 270(C).
    12. Gabriel Talero & Yasuki Kansha, 2022. "Simulation of the Steam Gasification of Japanese Waste Wood in an Indirectly Heated Downdraft Reactor Using PRO/II™: Numerical Comparison of Stoichiometric and Kinetic Models," Energies, MDPI, vol. 15(12), pages 1-19, June.
    13. HajiHashemi, MohammadSina & Mazhkoo, Shahin & Dadfar, Hossein & Livani, Ehsan & Naseri Varnosefaderani, Aliakbar & Pourali, Omid & Najafi Nobar, Shima & Dutta, Animesh, 2023. "Combined heat and power production in a pilot-scale biomass gasification system: Experimental study and kinetic simulation using ASPEN Plus," Energy, Elsevier, vol. 276(C).
    14. Pio, D.T. & Tarelho, L.A.C. & Pinto, P.C.R., 2020. "Gasification-based biorefinery integration in the pulp and paper industry: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    15. Adnan, Muflih A. & Xiong, Qingang & Muraza, Oki & Hossain, Mohammad M., 2020. "Gasification of wet microalgae to produce H2-rich syngas and electricity: A thermodynamic study considering exergy analysis," Renewable Energy, Elsevier, vol. 147(P1), pages 2195-2205.
    16. Namkung, Hueon & Lee, Young-Joo & Park, Ju-Hyoung & Song, Gyu-Seob & Choi, Jong Won & Kim, Joeng-Geun & Park, Se-Joon & Park, Joo Chang & Kim, Hyung-Taek & Choi, Young-Chan, 2019. "Influence of herbaceous biomass ash pre-treated by alkali metal leaching on the agglomeration/sintering and corrosion behaviors," Energy, Elsevier, vol. 187(C).
    17. Rachele Foffi & Elisa Savuto & Matteo Stante & Roberta Mancini & Katia Gallucci, 2022. "Study of Energy Valorization of Disposable Masks via Thermochemical Processes: Devolatilization Tests and Simulation Approach," Energies, MDPI, vol. 15(6), pages 1-24, March.
    18. Guo, Zhihang & Wang, Qinhui & Fang, Mengxiang & Luo, Zhongyang & Cen, Kefa, 2014. "Thermodynamic and economic analysis of polygeneration system integrating atmospheric pressure coal pyrolysis technology with circulating fluidized bed power plant," Applied Energy, Elsevier, vol. 113(C), pages 1301-1314.
    19. Knutsson, Pavleta & Maric, Jelena & Knutsson, Jesper & Larsson, Anton & Breitholtz, Claes & Seemann, Martin, 2019. "Potassium speciation and distribution for the K2CO3 additive-induced activation/deactivation of olivine during gasification of woody biomass," Applied Energy, Elsevier, vol. 248(C), pages 538-544.
    20. Vera Marcantonio & Luisa Di Paola & Marcello De Falco & Mauro Capocelli, 2023. "Modeling of Biomass Gasification: From Thermodynamics to Process Simulations," Energies, MDPI, vol. 16(20), pages 1-30, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:115:y:2018:i:c:p:1-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.