IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v114y2017ipap308-322.html
   My bibliography  Save this article

3D modelling of impacts from waves on tidal turbine wake characteristics and energy output

Author

Listed:
  • Sufian, Sufian. F.
  • Li, Ming
  • O’Connor, Brian A.

Abstract

A Virtual Blade Model is coupled with a CFD model to simulate impacts from a Horizontal Axis Tidal Turbine under combined surface waves and a steady current. A two-equation model is used to represent the turbulence generation and dissipation due to turbine rotation and background wave-current flows. The model is validated against experimental measurements, showing good agreement in both surface elevation and fluid hydrodynamics. It is then scaled up to investigate a steady current with large stream-wise surface waves in the presence of a turbine. A strong interaction is found between surface wave-induced flows and that around the turbine, which clearly impacts on both hydrodynamics within the wake and wave propagation, and produces large fluctuations in power production. Model results show that the wave-period-averaged velocities are similar to those in the steady-current-only condition. However, the wave enhances the turbulence immediately behind the turbine and reduces the length of the flow transition. The wave height reduces by about 10% and the wavelength extends by 12% when propagating over the turbine region in comparison with the no-turbine condition. The wave shape also becomes asymmetric. Compared with the current-alone situation, the model results suggest that the power production is similar. However, wave oscillation produces noticeably larger fluctuations.

Suggested Citation

  • Sufian, Sufian. F. & Li, Ming & O’Connor, Brian A., 2017. "3D modelling of impacts from waves on tidal turbine wake characteristics and energy output," Renewable Energy, Elsevier, vol. 114(PA), pages 308-322.
  • Handle: RePEc:eee:renene:v:114:y:2017:i:pa:p:308-322
    DOI: 10.1016/j.renene.2017.04.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117303373
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.04.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Jesus Henriques, Tiago A. & Hedges, Terry S. & Owen, Ieuan & Poole, Robert J., 2016. "The influence of blade pitch angle on the performance of a model horizontal axis tidal stream turbine operating under wave–current interaction," Energy, Elsevier, vol. 102(C), pages 166-175.
    2. Mason-Jones, A. & O'Doherty, D.M. & Morris, C.E. & O'Doherty, T., 2013. "Influence of a velocity profile & support structure on tidal stream turbine performance," Renewable Energy, Elsevier, vol. 52(C), pages 23-30.
    3. Sun, X. & Chick, J.P. & Bryden, I.G., 2008. "Laboratory-scale simulation of energy extraction from tidal currents," Renewable Energy, Elsevier, vol. 33(6), pages 1267-1274.
    4. Luznik, Luksa & Flack, Karen A. & Lust, Ethan E. & Taylor, Katharin, 2013. "The effect of surface waves on the performance characteristics of a model tidal turbine," Renewable Energy, Elsevier, vol. 58(C), pages 108-114.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Shu-qi & Li, Chen-yin & Zhang, Ying & Jing, Feng-mei & Chen, Lin-feng, 2022. "Influence of pitching motion on the hydrodynamic performance of a horizontal axis tidal turbine considering the surface wave," Renewable Energy, Elsevier, vol. 189(C), pages 1020-1032.
    2. Tian, Wenlong & Ni, Xiwen & Mao, Zhaoyong & Zhang, Tianqi, 2020. "Influence of surface waves on the hydrodynamic performance of a horizontal axis ocean current turbine," Renewable Energy, Elsevier, vol. 158(C), pages 37-48.
    3. Kirinus, Eduardo de Paula & Oleinik, Phelype Haron & Costi, Juliana & Marques, Wiliam Correa, 2018. "Long-term simulations for ocean energy off the Brazilian coast," Energy, Elsevier, vol. 163(C), pages 364-382.
    4. Soheil Radfar & Bijan Kianoush & Meysam Majidi Nezhad & Mehdi Neshat, 2022. "Developing an Extended Virtual Blade Model for Efficient Numerical Modeling of Wind and Tidal Farms," Sustainability, MDPI, vol. 14(21), pages 1-17, October.
    5. Federico Attene & Francesco Balduzzi & Alessandro Bianchini & M. Sergio Campobasso, 2020. "Using Experimentally Validated Navier-Stokes CFD to Minimize Tidal Stream Turbine Power Losses Due to Wake/Turbine Interactions," Sustainability, MDPI, vol. 12(21), pages 1-26, October.
    6. Mujahid Badshah & Saeed Badshah & James VanZwieten & Sakhi Jan & Muhammad Amir & Suheel Abdullah Malik, 2019. "Coupled Fluid-Structure Interaction Modelling of Loads Variation and Fatigue Life of a Full-Scale Tidal Turbine under the Effect of Velocity Profile," Energies, MDPI, vol. 12(11), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abuan, Binoe E. & Howell, Robert J., 2019. "The performance and hydrodynamics in unsteady flow of a horizontal axis tidal turbine," Renewable Energy, Elsevier, vol. 133(C), pages 1338-1351.
    2. Tian, Wenlong & Ni, Xiwen & Mao, Zhaoyong & Zhang, Tianqi, 2020. "Influence of surface waves on the hydrodynamic performance of a horizontal axis ocean current turbine," Renewable Energy, Elsevier, vol. 158(C), pages 37-48.
    3. de Jesus Henriques, Tiago A. & Hedges, Terry S. & Owen, Ieuan & Poole, Robert J., 2016. "The influence of blade pitch angle on the performance of a model horizontal axis tidal stream turbine operating under wave–current interaction," Energy, Elsevier, vol. 102(C), pages 166-175.
    4. Stephen Nash & Agnieszka I. Olbert & Michael Hartnett, 2015. "Towards a Low-Cost Modelling System for Optimising the Layout of Tidal Turbine Arrays," Energies, MDPI, vol. 8(12), pages 1-19, November.
    5. Modali, Pranav K. & Vinod, Ashwin & Banerjee, Arindam, 2021. "Towards a better understanding of yawed turbine wake for efficient wake steering in tidal arrays," Renewable Energy, Elsevier, vol. 177(C), pages 482-494.
    6. Lust, Ethan E. & Flack, Karen A. & Luznik, Luksa, 2020. "Survey of the near wake of an axial-flow hydrokinetic turbine in the presence of waves," Renewable Energy, Elsevier, vol. 146(C), pages 2199-2209.
    7. Mujahid Badshah & Saeed Badshah & James VanZwieten & Sakhi Jan & Muhammad Amir & Suheel Abdullah Malik, 2019. "Coupled Fluid-Structure Interaction Modelling of Loads Variation and Fatigue Life of a Full-Scale Tidal Turbine under the Effect of Velocity Profile," Energies, MDPI, vol. 12(11), pages 1-22, June.
    8. Ramin Alipour & Roozbeh Alipour & Seyed Saeid Rahimian Koloor & Michal Petrů & Seyed Alireza Ghazanfari, 2020. "On the Performance of Small-Scale Horizontal Axis Tidal Current Turbines. Part 1: One Single Turbine," Sustainability, MDPI, vol. 12(15), pages 1-25, July.
    9. Chen, Yaling & Lin, Binliang & Lin, Jie & Wang, Shujie, 2017. "Experimental study of wake structure behind a horizontal axis tidal stream turbine," Applied Energy, Elsevier, vol. 196(C), pages 82-96.
    10. Lewis, M.J. & Neill, S.P. & Hashemi, M.R. & Reza, M., 2014. "Realistic wave conditions and their influence on quantifying the tidal stream energy resource," Applied Energy, Elsevier, vol. 136(C), pages 495-508.
    11. Li, Xiaorong & Li, Ming & Jordan, Laura-Beth & McLelland, Stuart & Parsons, Daniel R. & Amoudry, Laurent O. & Song, Qingyang & Comerford, Liam, 2019. "Modelling impacts of tidal stream turbines on surface waves," Renewable Energy, Elsevier, vol. 130(C), pages 725-734.
    12. Perez, Larissa & Cossu, Remo & Grinham, Alistair & Penesis, Irene, 2022. "Tidal turbine performance and loads for various hub heights and wave conditions using high-frequency field measurements and Blade Element Momentum theory," Renewable Energy, Elsevier, vol. 200(C), pages 1548-1560.
    13. El-Shahat, Saeed A. & Li, Guojun & Fu, Lei, 2021. "Investigation of wave–current interaction for a tidal current turbine," Energy, Elsevier, vol. 227(C).
    14. Wang, Shu-qi & Li, Chen-yin & Zhang, Ying & Jing, Feng-mei & Chen, Lin-feng, 2022. "Influence of pitching motion on the hydrodynamic performance of a horizontal axis tidal turbine considering the surface wave," Renewable Energy, Elsevier, vol. 189(C), pages 1020-1032.
    15. Zhang, Zhi & Zhang, Yuquan & Zheng, Yuan & Zhang, Jisheng & Fernandez-Rodriguez, Emmanuel & Zang, Wei & Ji, Renwei, 2023. "Power fluctuation and wake characteristics of tidal stream turbine subjected to wave and current interaction," Energy, Elsevier, vol. 264(C).
    16. Beganovic, Nejra & Söffker, Dirk, 2016. "Structural health management utilization for lifetime prognosis and advanced control strategy deployment of wind turbines: An overview and outlook concerning actual methods, tools, and obtained result," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 68-83.
    17. Lilia Flores Mateos & Michael Hartnett, 2020. "Hydrodynamic Effects of Tidal-Stream Power Extraction for Varying Turbine Operating Conditions," Energies, MDPI, vol. 13(12), pages 1-23, June.
    18. Eva Segura & Rafael Morales & José A. Somolinos, 2017. "Cost Assessment Methodology and Economic Viability of Tidal Energy Projects," Energies, MDPI, vol. 10(11), pages 1-27, November.
    19. Yang, Zhaoqing & Wang, Taiping & Copping, Andrea E., 2013. "Modeling tidal stream energy extraction and its effects on transport processes in a tidal channel and bay system using a three-dimensional coastal ocean model," Renewable Energy, Elsevier, vol. 50(C), pages 605-613.
    20. Nash, S. & Phoenix, A., 2017. "A review of the current understanding of the hydro-environmental impacts of energy removal by tidal turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 648-662.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:114:y:2017:i:pa:p:308-322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.