IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v227y2021ics0360544221006265.html
   My bibliography  Save this article

Investigation of wave–current interaction for a tidal current turbine

Author

Listed:
  • El-Shahat, Saeed A.
  • Li, Guojun
  • Fu, Lei

Abstract

Due to linear wave theory limitations, higher-order theories have been coupled with the Blade Element Momentum (BEM) model to predict the time behavior of the dynamic loading on the combined wave–current field. Second-order, third-order approximations and fifth-order stokes theory have been used to check their effects on the predicted wave kinematics and on the resulting dynamic loadings. To overcome the problem of linear superposition method, a wave–current interaction model was implemented. A significant change in the wave length and wave height was obtained, whereas a negligible change was observed for the current velocity and water depth. By implementing a wave–current interaction model for a wave train and inflow current in the same direction of the wave propagation, the loading ranges of blade root bending moments significantly decreased, whereas their wave lengths increased. Furthermore, a parametric study was performed through increasing the wave height and current velocity to reveal their effects on the dynamic loadings with and without considering the wave–current interaction. Big differences were obtained between the maximum predicted loads for cases with and without interaction, which would help in the proper selection of tidal current turbine’s structural design.

Suggested Citation

  • El-Shahat, Saeed A. & Li, Guojun & Fu, Lei, 2021. "Investigation of wave–current interaction for a tidal current turbine," Energy, Elsevier, vol. 227(C).
  • Handle: RePEc:eee:energy:v:227:y:2021:i:c:s0360544221006265
    DOI: 10.1016/j.energy.2021.120377
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221006265
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120377?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gaurier, Benoît & Davies, Peter & Deuff, Albert & Germain, Grégory, 2013. "Flume tank characterization of marine current turbine blade behaviour under current and wave loading," Renewable Energy, Elsevier, vol. 59(C), pages 1-12.
    2. Batten, W.M.J. & Bahaj, A.S. & Molland, A.F. & Chaplin, J.R., 2006. "Hydrodynamics of marine current turbines," Renewable Energy, Elsevier, vol. 31(2), pages 249-256.
    3. de Jesus Henriques, Tiago A. & Hedges, Terry S. & Owen, Ieuan & Poole, Robert J., 2016. "The influence of blade pitch angle on the performance of a model horizontal axis tidal stream turbine operating under wave–current interaction," Energy, Elsevier, vol. 102(C), pages 166-175.
    4. Chapman, J.C. & Masters, I. & Togneri, M. & Orme, J.A.C., 2013. "The Buhl correction factor applied to high induction conditions for tidal stream turbines," Renewable Energy, Elsevier, vol. 60(C), pages 472-480.
    5. Du, Zhaohui & Selig, M.S, 2000. "The effect of rotation on the boundary layer of a wind turbine blade," Renewable Energy, Elsevier, vol. 20(2), pages 167-181.
    6. Luznik, Luksa & Flack, Karen A. & Lust, Ethan E. & Taylor, Katharin, 2013. "The effect of surface waves on the performance characteristics of a model tidal turbine," Renewable Energy, Elsevier, vol. 58(C), pages 108-114.
    7. Galloway, Pascal W. & Myers, Luke E. & Bahaj, AbuBakr S., 2014. "Quantifying wave and yaw effects on a scale tidal stream turbine," Renewable Energy, Elsevier, vol. 63(C), pages 297-307.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramin Alipour & Roozbeh Alipour & Seyed Saeid Rahimian Koloor & Michal Petrů & Seyed Alireza Ghazanfari, 2020. "On the Performance of Small-Scale Horizontal Axis Tidal Current Turbines. Part 1: One Single Turbine," Sustainability, MDPI, vol. 12(15), pages 1-25, July.
    2. Brown, S.A. & Ransley, E.J. & Xie, N. & Monk, K. & De Angelis, G.M. & Nicholls-Lee, R. & Guerrini, E. & Greaves, D.M., 2021. "On the impact of motion-thrust coupling in floating tidal energy applications," Applied Energy, Elsevier, vol. 282(PB).
    3. de Jesus Henriques, Tiago A. & Hedges, Terry S. & Owen, Ieuan & Poole, Robert J., 2016. "The influence of blade pitch angle on the performance of a model horizontal axis tidal stream turbine operating under wave–current interaction," Energy, Elsevier, vol. 102(C), pages 166-175.
    4. Lust, Ethan E. & Flack, Karen A. & Luznik, Luksa, 2020. "Survey of the near wake of an axial-flow hydrokinetic turbine in the presence of waves," Renewable Energy, Elsevier, vol. 146(C), pages 2199-2209.
    5. Wang, Shu-qi & Cui, Jie & Ye, Ren-chuan & Chen, Zhong-fei & Zhang, Liang, 2019. "Study of the hydrodynamic performance prediction method for a horizontal-axis tidal current turbine with coupled rotation and surging motion," Renewable Energy, Elsevier, vol. 135(C), pages 313-325.
    6. Lam, Raymond & Dubon, Sergio Lopez & Sellar, Brian & Vogel, Christopher & Davey, Thomas & Steynor, Jeffrey, 2023. "Temporal and spatial characterisation of tidal blade load variation for structural fatigue testing," Renewable Energy, Elsevier, vol. 208(C), pages 665-678.
    7. Zhang, Yuquan & Zang, Wei & Zheng, Jinhai & Cappietti, Lorenzo & Zhang, Jisheng & Zheng, Yuan & Fernandez-Rodriguez, E., 2021. "The influence of waves propagating with the current on the wake of a tidal stream turbine," Applied Energy, Elsevier, vol. 290(C).
    8. Draycott, S. & Steynor, J. & Nambiar, A. & Sellar, B. & Venugopal, V., 2020. "Rotational sampling of waves by tidal turbine blades," Renewable Energy, Elsevier, vol. 162(C), pages 2197-2209.
    9. Wang, Shu-qi & Li, Chen-yin & Zhang, Ying & Jing, Feng-mei & Chen, Lin-feng, 2022. "Influence of pitching motion on the hydrodynamic performance of a horizontal axis tidal turbine considering the surface wave," Renewable Energy, Elsevier, vol. 189(C), pages 1020-1032.
    10. Tian, Wenlong & Ni, Xiwen & Mao, Zhaoyong & Zhang, Tianqi, 2020. "Influence of surface waves on the hydrodynamic performance of a horizontal axis ocean current turbine," Renewable Energy, Elsevier, vol. 158(C), pages 37-48.
    11. Hashemi, M. Reza & Neill, Simon P. & Robins, Peter E. & Davies, Alan G. & Lewis, Matt J., 2015. "Effect of waves on the tidal energy resource at a planned tidal stream array," Renewable Energy, Elsevier, vol. 75(C), pages 626-639.
    12. Mujahid Badshah & Saeed Badshah & James VanZwieten & Sakhi Jan & Muhammad Amir & Suheel Abdullah Malik, 2019. "Coupled Fluid-Structure Interaction Modelling of Loads Variation and Fatigue Life of a Full-Scale Tidal Turbine under the Effect of Velocity Profile," Energies, MDPI, vol. 12(11), pages 1-22, June.
    13. Chen, Long & Lam, Wei-Haur, 2015. "A review of survivability and remedial actions of tidal current turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 891-900.
    14. Wang, Shu-qi & Sun, Ke & Xu, Gang & Liu, Yong-tao & Bai, Xu, 2017. "Hydrodynamic analysis of horizontal-axis tidal current turbine with rolling and surging coupled motions," Renewable Energy, Elsevier, vol. 102(PA), pages 87-97.
    15. Lewis, M.J. & Neill, S.P. & Hashemi, M.R. & Reza, M., 2014. "Realistic wave conditions and their influence on quantifying the tidal stream energy resource," Applied Energy, Elsevier, vol. 136(C), pages 495-508.
    16. Perez, Larissa & Cossu, Remo & Grinham, Alistair & Penesis, Irene, 2022. "Tidal turbine performance and loads for various hub heights and wave conditions using high-frequency field measurements and Blade Element Momentum theory," Renewable Energy, Elsevier, vol. 200(C), pages 1548-1560.
    17. Laws, Nicholas D. & Epps, Brenden P., 2016. "Hydrokinetic energy conversion: Technology, research, and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1245-1259.
    18. Calandra, Gemma & Wang, Taiping & Miller, Calum & Yang, Zhaoqing & Polagye, Brian, 2023. "A comparison of the power potential for surface- and seabed-deployed tidal turbines in the San Juan Archipelago, Salish Sea, WA," Renewable Energy, Elsevier, vol. 214(C), pages 168-184.
    19. Scarlett, Gabriel Thomas & Sellar, Brian & van den Bremer, Ton & Viola, Ignazio Maria, 2019. "Unsteady hydrodynamics of a full-scale tidal turbine operating in large wave conditions," Renewable Energy, Elsevier, vol. 143(C), pages 199-213.
    20. Milne, I.A. & Day, A.H. & Sharma, R.N. & Flay, R.G.J., 2016. "The characterisation of the hydrodynamic loads on tidal turbines due to turbulence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 851-864.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:227:y:2021:i:c:s0360544221006265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.