IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v189y2022icp1020-1032.html
   My bibliography  Save this article

Influence of pitching motion on the hydrodynamic performance of a horizontal axis tidal turbine considering the surface wave

Author

Listed:
  • Wang, Shu-qi
  • Li, Chen-yin
  • Zhang, Ying
  • Jing, Feng-mei
  • Chen, Lin-feng

Abstract

A CFD numerical method is established under the wave-current condition, used to analyze the hydrodynamic performance of a horizontal-axis tidal turbine based on floating platform with rotation and pitching motion. The inflow direction load, pitch moment and power coefficients with different depths of the blade tip-immersion, the periods and amplitudes of the pitch, wave heights are obtained. The three coefficients have obvious periodically fluctuated with the pitching and wave frequencies, while the time mean of those have changed little with increasing of the depth of blade tip-immersion, wave height, pitch (wave) period and pitching amplitude. So considering damping and additional mass forces, a load fitting model is established, and the damping and additional mass coefficients are calculated by the least square method. The influence of damping coefficient on the hydrodynamic loads is obvious, while the influence of additional mass coefficient on that can be neglected, and the damping coefficient of inflow direction load coefficient is basically stable. The damping coefficients of the pitching moment and power coefficients fluctuate periodically, but the mean value of damping coefficients keep stable. The research results in this paper are important for studying the coupling motion of the turbine and the floating platform.

Suggested Citation

  • Wang, Shu-qi & Li, Chen-yin & Zhang, Ying & Jing, Feng-mei & Chen, Lin-feng, 2022. "Influence of pitching motion on the hydrodynamic performance of a horizontal axis tidal turbine considering the surface wave," Renewable Energy, Elsevier, vol. 189(C), pages 1020-1032.
  • Handle: RePEc:eee:renene:v:189:y:2022:i:c:p:1020-1032
    DOI: 10.1016/j.renene.2022.03.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122003457
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.03.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Jesus Henriques, Tiago A. & Hedges, Terry S. & Owen, Ieuan & Poole, Robert J., 2016. "The influence of blade pitch angle on the performance of a model horizontal axis tidal stream turbine operating under wave–current interaction," Energy, Elsevier, vol. 102(C), pages 166-175.
    2. Gaurier, Benoît & Davies, Peter & Deuff, Albert & Germain, Grégory, 2013. "Flume tank characterization of marine current turbine blade behaviour under current and wave loading," Renewable Energy, Elsevier, vol. 59(C), pages 1-12.
    3. Sufian, Sufian. F. & Li, Ming & O’Connor, Brian A., 2017. "3D modelling of impacts from waves on tidal turbine wake characteristics and energy output," Renewable Energy, Elsevier, vol. 114(PA), pages 308-322.
    4. Alamian, Rezvan & Shafaghat, Rouzbeh & Amiri, Hoseyn A. & Shadloo, Mostafa Safdari, 2020. "Experimental assessment of a 100 W prototype horizontal axis tidal turbine by towing tank tests," Renewable Energy, Elsevier, vol. 155(C), pages 172-180.
    5. Brown, S.A. & Ransley, E.J. & Greaves, D.M., 2020. "Developing a coupled turbine thrust methodology for floating tidal stream concepts: Verification under prescribed motion," Renewable Energy, Elsevier, vol. 147(P1), pages 529-540.
    6. Abuan, Binoe E. & Howell, Robert J., 2019. "The performance and hydrodynamics in unsteady flow of a horizontal axis tidal turbine," Renewable Energy, Elsevier, vol. 133(C), pages 1338-1351.
    7. Kai-Wern Ng & Wei-Haur Lam & Khai-Ching Ng, 2013. "2002–2012: 10 Years of Research Progress in Horizontal-Axis Marine Current Turbines," Energies, MDPI, vol. 6(3), pages 1-30, March.
    8. Kumar, P. Madhan & Seo, Jeonghwa & Seok, Woochan & Rhee, Shin Hyung & Samad, Abdus, 2019. "Multi-fidelity optimization of blade thickness parameters for a horizontal axis tidal stream turbine," Renewable Energy, Elsevier, vol. 135(C), pages 277-287.
    9. Tian, Wenlong & Ni, Xiwen & Mao, Zhaoyong & Zhang, Tianqi, 2020. "Influence of surface waves on the hydrodynamic performance of a horizontal axis ocean current turbine," Renewable Energy, Elsevier, vol. 158(C), pages 37-48.
    10. Zhang, Yuquan & Zang, Wei & Zheng, Jinhai & Cappietti, Lorenzo & Zhang, Jisheng & Zheng, Yuan & Fernandez-Rodriguez, E., 2021. "The influence of waves propagating with the current on the wake of a tidal stream turbine," Applied Energy, Elsevier, vol. 290(C).
    11. Zhou, Zhibin & Benbouzid, Mohamed & Charpentier, Jean-Frédéric & Scuiller, Franck & Tang, Tianhao, 2017. "Developments in large marine current turbine technologies – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 852-858.
    12. Milne, I.A. & Day, A.H. & Sharma, R.N. & Flay, R.G.J., 2015. "Blade loading on tidal turbines for uniform unsteady flow," Renewable Energy, Elsevier, vol. 77(C), pages 338-350.
    13. Luznik, Luksa & Flack, Karen A. & Lust, Ethan E. & Taylor, Katharin, 2013. "The effect of surface waves on the performance characteristics of a model tidal turbine," Renewable Energy, Elsevier, vol. 58(C), pages 108-114.
    14. Frost, C. & Morris, C.E. & Mason-Jones, A. & O'Doherty, D.M. & O'Doherty, T., 2015. "The effect of tidal flow directionality on tidal turbine performance characteristics," Renewable Energy, Elsevier, vol. 78(C), pages 609-620.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mei, Yunlei & Jing, Fengmei & Lu, Qiang & Guo, Bin, 2024. "Study on the hydrodynamic and wake characteristics of variable speed control of horizontal axis tidal turbine under surge motion," Energy, Elsevier, vol. 298(C).
    2. Zhang, Yuquan & Wei, Wenqian & Zheng, Jinhai & Peng, Bin & Qian, Yaoru & Li, Chengyi & Zheng, Yuan & Fernandez-Rodriguez, Emmanuel & Yu, An, 2023. "Quantifying the surge-induced response of a floating tidal stream turbine under wave-current flows," Energy, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mujahid Badshah & Saeed Badshah & James VanZwieten & Sakhi Jan & Muhammad Amir & Suheel Abdullah Malik, 2019. "Coupled Fluid-Structure Interaction Modelling of Loads Variation and Fatigue Life of a Full-Scale Tidal Turbine under the Effect of Velocity Profile," Energies, MDPI, vol. 12(11), pages 1-22, June.
    2. Brown, S.A. & Ransley, E.J. & Xie, N. & Monk, K. & De Angelis, G.M. & Nicholls-Lee, R. & Guerrini, E. & Greaves, D.M., 2021. "On the impact of motion-thrust coupling in floating tidal energy applications," Applied Energy, Elsevier, vol. 282(PB).
    3. Ramin Alipour & Roozbeh Alipour & Seyed Saeid Rahimian Koloor & Michal Petrů & Seyed Alireza Ghazanfari, 2020. "On the Performance of Small-Scale Horizontal Axis Tidal Current Turbines. Part 1: One Single Turbine," Sustainability, MDPI, vol. 12(15), pages 1-25, July.
    4. Faizan, Muhammad & Badshah, Saeed & Badshah, Mujahid & Haider, Basharat Ali, 2022. "Performance and wake analysis of horizontal axis tidal current turbine using Improved Delayed Detached Eddy Simulation," Renewable Energy, Elsevier, vol. 184(C), pages 740-752.
    5. Chen, Long & Lam, Wei-Haur, 2015. "A review of survivability and remedial actions of tidal current turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 891-900.
    6. Zhang, Yuquan & Zang, Wei & Zheng, Jinhai & Cappietti, Lorenzo & Zhang, Jisheng & Zheng, Yuan & Fernandez-Rodriguez, E., 2021. "The influence of waves propagating with the current on the wake of a tidal stream turbine," Applied Energy, Elsevier, vol. 290(C).
    7. Tian, Wenlong & Ni, Xiwen & Mao, Zhaoyong & Zhang, Tianqi, 2020. "Influence of surface waves on the hydrodynamic performance of a horizontal axis ocean current turbine," Renewable Energy, Elsevier, vol. 158(C), pages 37-48.
    8. Lust, Ethan E. & Flack, Karen A. & Luznik, Luksa, 2020. "Survey of the near wake of an axial-flow hydrokinetic turbine in the presence of waves," Renewable Energy, Elsevier, vol. 146(C), pages 2199-2209.
    9. El-Shahat, Saeed A. & Li, Guojun & Fu, Lei, 2021. "Investigation of wave–current interaction for a tidal current turbine," Energy, Elsevier, vol. 227(C).
    10. Calandra, Gemma & Wang, Taiping & Miller, Calum & Yang, Zhaoqing & Polagye, Brian, 2023. "A comparison of the power potential for surface- and seabed-deployed tidal turbines in the San Juan Archipelago, Salish Sea, WA," Renewable Energy, Elsevier, vol. 214(C), pages 168-184.
    11. Wang, Yirong & Zhang, Yuquan & Zhang, Zhi & Feng, Chen & Fernandez-Rodriguez, Emmanuel, 2024. "Analysis of wake and power fluctuation of a tidal current turbine under variable wave periods," Energy, Elsevier, vol. 304(C).
    12. Qian, Peng & Feng, Bo & Liu, Hao & Tian, Xiange & Si, Yulin & Zhang, Dahai, 2019. "Review on configuration and control methods of tidal current turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 125-139.
    13. Zia Ur Rehman & Saeed Badshah & Amer Farhan Rafique & Mujahid Badshah & Sakhi Jan & Muhammad Amjad, 2021. "Effect of a Support Tower on the Performance and Wake of a Tidal Current Turbine," Energies, MDPI, vol. 14(4), pages 1-13, February.
    14. de Jesus Henriques, Tiago A. & Hedges, Terry S. & Owen, Ieuan & Poole, Robert J., 2016. "The influence of blade pitch angle on the performance of a model horizontal axis tidal stream turbine operating under wave–current interaction," Energy, Elsevier, vol. 102(C), pages 166-175.
    15. Guillou, Nicolas & Thiébot, Jérôme & Chapalain, Georges, 2019. "Turbines’ effects on water renewal within a marine tidal stream energy site," Energy, Elsevier, vol. 189(C).
    16. Wang, Shu-qi & Cui, Jie & Ye, Ren-chuan & Chen, Zhong-fei & Zhang, Liang, 2019. "Study of the hydrodynamic performance prediction method for a horizontal-axis tidal current turbine with coupled rotation and surging motion," Renewable Energy, Elsevier, vol. 135(C), pages 313-325.
    17. Chuhua Jiang & Xuedao Shu & Junhua Chen & Lingjie Bao & Hao Li, 2020. "Research on Performance Evaluation of Tidal Energy Turbine under Variable Velocity," Energies, MDPI, vol. 13(23), pages 1-14, November.
    18. Lam, Raymond & Dubon, Sergio Lopez & Sellar, Brian & Vogel, Christopher & Davey, Thomas & Steynor, Jeffrey, 2023. "Temporal and spatial characterisation of tidal blade load variation for structural fatigue testing," Renewable Energy, Elsevier, vol. 208(C), pages 665-678.
    19. Vinod, Ashwin & Banerjee, Arindam, 2019. "Performance and near-wake characterization of a tidal current turbine in elevated levels of free stream turbulence," Applied Energy, Elsevier, vol. 254(C).
    20. Zhang, Yuquan & Peng, Bin & Zheng, Jinhai & Zheng, Yuan & Tang, Qinghong & Liu, Zhiqiang & Xu, Junhui & Wang, Yirong & Fernandez-Rodriguez, Emmanuel, 2023. "The impact of yaw motion on the wake interaction of adjacent floating tidal stream turbines under free surface condition," Energy, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:189:y:2022:i:c:p:1020-1032. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.