IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v113y2017icp1359-1365.html
   My bibliography  Save this article

Heterotrophic cultivation of microalgae in photobioreactor using low cost crude glycerol for enhanced biodiesel production

Author

Listed:
  • Katiyar, Richa
  • Gurjar, B.R.
  • Bharti, Randhir K.
  • Kumar, Amit
  • Biswas, Shalini
  • Pruthi, Vikas

Abstract

This integrated approach first time investigates the use of crude glycerol (CG), a primary by product of the biodiesel production, for heterotrophic cultivation of microalgae (namely, Chlorella sp.) in photobioreactor (PBR) to enhance biodiesel production. The glycerol was reported 28.5 ± 0.70% in CG, causing nearly two folds increase in biomass productivity (446.50 ± 1.50 mg L−1day−1) and nearly four folds enhanced lipid productivity (165.15 ± 0.55 mg L−1 day−1) for the algal cells cultivated in PBR with addition of CG (PBR+CG) system as compared to Bold's Basal media (BBM) used as control. The total lipid content (34.36 ± 0.51%) was also doubled for the cells grown in PBR+CG system than in BBM. The analysis of fatty acid methyl esters (FAMEs) profile by GC-MS showed reduction in total unsaturated fatty acids and poly unsaturated fatty acids, and increase in total saturated fatty acids (SFAs) for the biodiesel obtained from algal cells grown in PBR+CG system. Moreover, the physical properties estimation also specified higher cetane number (53.89) and average oxidative stability (3.41 h), which are comparable with ASTM D6751 and EN 14214 fuel standards. This study demonstrates the potential of the use of CG for enhancing the low cost biodiesel production for vehicular transportation.

Suggested Citation

  • Katiyar, Richa & Gurjar, B.R. & Bharti, Randhir K. & Kumar, Amit & Biswas, Shalini & Pruthi, Vikas, 2017. "Heterotrophic cultivation of microalgae in photobioreactor using low cost crude glycerol for enhanced biodiesel production," Renewable Energy, Elsevier, vol. 113(C), pages 1359-1365.
  • Handle: RePEc:eee:renene:v:113:y:2017:i:c:p:1359-1365
    DOI: 10.1016/j.renene.2017.06.100
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117306043
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.06.100?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Katiyar, Richa & Gurjar, B.R. & Biswas, Shalini & Pruthi, Vikas & Kumar, Nalin & Kumar, Prashant, 2017. "Microalgae: An emerging source of energy based bio-products and a solution for environmental issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1083-1093.
    2. Huang, GuanHua & Chen, Feng & Wei, Dong & Zhang, XueWu & Chen, Gu, 2010. "Biodiesel production by microalgal biotechnology," Applied Energy, Elsevier, vol. 87(1), pages 38-46, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ashwin Jacob & B. Ashok & Hwai Chyuan Ong & Phung Thi Kim Le, 2023. "Scaling-up heterotrophic cultures of C. Pyrenoidosa microalgae for sustainable synthesis of low-density biodiesel mixtures and predict CI engine behavior at optimal proportions," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 400-422, January.
    2. Gao, Feng & Cui, Wei & Xu, Jing-Ping & Li, Chen & Jin, Wei-Hong & Yang, Hong-Li, 2019. "Lipid accumulation properties of Chlorella vulgaris and Scenedesmus obliquus in membrane photobioreactor (MPBR) fed with secondary effluent from municipal wastewater treatment plant," Renewable Energy, Elsevier, vol. 136(C), pages 671-676.
    3. Lim, Juin Yau & Teng, Sin Yong & How, Bing Shen & Nam, KiJeon & Heo, SungKu & Máša, Vítězslav & Stehlík, Petr & Yoo, Chang Kyoo, 2022. "From microalgae to bioenergy: Identifying optimally integrated biorefinery pathways and harvest scheduling under uncertainties in predicted climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Jacob, Ashwin & Ashok, B. & Shanthakumar, S. & Jino, L. & Karthikeyan, A. & Kavvampally, Rahul & Raja, Ignatius, 2022. "Formulation of optimal bioenergy mixtures from phototrophic and heterotrophic cultures of S. quadricauda and C. pyrenoidosa microalgal strains," Renewable Energy, Elsevier, vol. 197(C), pages 695-708.
    5. Nayak, Manoranjan & Rashid, Naim & Suh, William I. & Lee, Bongsoo & Chang, Yong Keun, 2019. "Performance evaluation of different cationic flocculants through pH modulation for efficient harvesting of Chlorella sp. HS2 and their impact on water reusability," Renewable Energy, Elsevier, vol. 136(C), pages 819-827.
    6. Daniel Borowiak & Małgorzata Krzywonos, 2022. "Bioenergy, Biofuels, Lipids and Pigments—Research Trends in the Use of Microalgae Grown in Photobioreactors," Energies, MDPI, vol. 15(15), pages 1-48, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Behnam Tabatabai & Afua Adusei & Alok Kumar Shrivastava & Prashant Kumar Singh & Viji Sitther, 2020. "Nitrogen Deprivation in Fremyella diplosiphon Augments Lipid Production without Affecting Growth," Energies, MDPI, vol. 13(21), pages 1-12, November.
    2. Wu, Hong & Li, Yuanyuan & Chen, Lei & Zong, Minhua, 2011. "Production of microbial oil with high oleic acid content by Trichosporon capitatum," Applied Energy, Elsevier, vol. 88(1), pages 138-142, January.
    3. Bharathiraja, B. & Jayamuthunagai, J. & Sudharsanaa, T. & Bharghavi, A. & Praveenkumar, R. & Chakravarthy, M. & Yuvaraj, D., 2017. "Biobutanol – An impending biofuel for future: A review on upstream and downstream processing tecniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 788-807.
    4. Patel, Akash & Gami, Bharat & Patel, Pankaj & Patel, Beena, 2017. "Microalgae: Antiquity to era of integrated technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 535-547.
    5. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    6. Cremonez, Paulo André & Feroldi, Michael & de Araújo, Amanda Viana & Negreiros Borges, Maykon & Weiser Meier, Thompson & Feiden, Armin & Gustavo Teleken, Joel, 2015. "Biofuels in Brazilian aviation: Current scenario and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1063-1072.
    7. Ramachandran, K. & Suganya, T. & Nagendra Gandhi, N. & Renganathan, S., 2013. "Recent developments for biodiesel production by ultrasonic assist transesterification using different heterogeneous catalyst: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 410-418.
    8. M. N. Uddin & Kuaanan Techato & Juntakan Taweekun & Md Mofijur Rahman & M. G. Rasul & T. M. I. Mahlia & S. M. Ashrafur, 2018. "An Overview of Recent Developments in Biomass Pyrolysis Technologies," Energies, MDPI, vol. 11(11), pages 1-24, November.
    9. Nirmala, N. & Dawn, S.S., 2021. "Optimization of Chlorella variabilis. MK039712.1 lipid transesterification using Response Surface Methodology and analytical characterization of biodiesel," Renewable Energy, Elsevier, vol. 179(C), pages 1663-1673.
    10. Zeng, Yu & Xie, Tonghui & Li, Panyu & Jian, Banggao & Li, Xiang & Xie, Yi & Zhang, Yongkui, 2018. "Enhanced lipid production and nutrient utilization of food waste hydrolysate by mixed culture of oleaginous yeast Rhodosporidium toruloides and oleaginous microalgae Chlorella vulgaris," Renewable Energy, Elsevier, vol. 126(C), pages 915-923.
    11. Atapour, Mehdi & Kariminia, Hamid-Reza, 2011. "Characterization and transesterification of Iranian bitter almond oil for biodiesel production," Applied Energy, Elsevier, vol. 88(7), pages 2377-2381, July.
    12. Alagu, Karthikeyan & Venu, Harish & Jayaraman, Jayaprabakar & Raju, V. Dhana & Subramani, Lingesan & Appavu, Prabhu & S, Dhanasekar, 2019. "Novel water hyacinth biodiesel as a potential alternative fuel for existing unmodified diesel engine: Performance, combustion and emission characteristics," Energy, Elsevier, vol. 179(C), pages 295-305.
    13. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1446-1466.
    14. Demirbas, Ayhan, 2011. "Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: A solution to pollution problems," Applied Energy, Elsevier, vol. 88(10), pages 3541-3547.
    15. Venu, Harish & Raju, V. Dhana & Subramani, Lingesan & Appavu, Prabhu, 2020. "Experimental assessment on the regulated and unregulated emissions of DI diesel engine fuelled with Chlorella emersonii methyl ester (CEME)," Renewable Energy, Elsevier, vol. 151(C), pages 88-102.
    16. Amaro, Helena M. & Macedo, Ângela C. & Malcata, F. Xavier, 2012. "Microalgae: An alternative as sustainable source of biofuels?," Energy, Elsevier, vol. 44(1), pages 158-166.
    17. Niblick, Briana & Landis, Amy E., 2016. "Assessing renewable energy potential on United States marginal and contaminated sites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 489-497.
    18. Andres Quintero, Julian & Ruth Felix, Erika & Eduardo Rincón, Luis & Crisspín, Marianella & Fernandez Baca, Jaime & Khwaja, Yasmeen & Cardona, Carlos Ariel, 2012. "Social and techno-economical analysis of biodiesel production in Peru," Energy Policy, Elsevier, vol. 43(C), pages 427-435.
    19. Chen, Hui & Wang, Jie & Zheng, Yanli & Zhan, Jiao & He, Chenliu & Wang, Qiang, 2018. "Algal biofuel production coupled bioremediation of biomass power plant wastes based on Chlorella sp. C2 cultivation," Applied Energy, Elsevier, vol. 211(C), pages 296-305.
    20. Capson-Tojo, Gabriel & Torres, Alvaro & Muñoz, Raúl & Bartacek, Jan & Jeison, David, 2017. "Mesophilic and thermophilic anaerobic digestion of lipid-extracted microalgae N. gaditana for methane production," Renewable Energy, Elsevier, vol. 105(C), pages 539-546.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:113:y:2017:i:c:p:1359-1365. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.