IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v136y2019icp671-676.html
   My bibliography  Save this article

Lipid accumulation properties of Chlorella vulgaris and Scenedesmus obliquus in membrane photobioreactor (MPBR) fed with secondary effluent from municipal wastewater treatment plant

Author

Listed:
  • Gao, Feng
  • Cui, Wei
  • Xu, Jing-Ping
  • Li, Chen
  • Jin, Wei-Hong
  • Yang, Hong-Li

Abstract

In this study, green algae Chlorella vulgaris and Scenedesmus obliquus were cultured in membrane photobioreactor (MPBR) with continuous flow of secondary effluent from the municipal wastewater treatment plant (MWWTP) to study the lipid accumulation properties of microalgae cultured in MPBR with low nutrient culture medium. Lipid contents in algal cells were determined daily by sulpho-phospho-vanillin (SPV) colorimetric method. The results indicated that the lipid cell contents of Chlorella vulgaris and Scenedesmus obliquus were strongly related to their growth phase in the reactors. In the stationary growth phase, the average lipid cell contents of Chlorella vulgaris and Scenedesmus obliquus were 29.8% and 36.9%, respectively, much higher than that achieved during logarithmic growth phase (16.3% for Chlorella vulgaris and 20.2% for Scenedesmus obliquus), suggesting that microalgae with higher lipid cell content can be obtained by controlling the growth of microalgae in the MPBR at a stationary phase. The results of this study are of significance for optimizing the operation of MPBR in order to realize the high efficiency of algal lipid production.

Suggested Citation

  • Gao, Feng & Cui, Wei & Xu, Jing-Ping & Li, Chen & Jin, Wei-Hong & Yang, Hong-Li, 2019. "Lipid accumulation properties of Chlorella vulgaris and Scenedesmus obliquus in membrane photobioreactor (MPBR) fed with secondary effluent from municipal wastewater treatment plant," Renewable Energy, Elsevier, vol. 136(C), pages 671-676.
  • Handle: RePEc:eee:renene:v:136:y:2019:i:c:p:671-676
    DOI: 10.1016/j.renene.2019.01.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119300382
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.01.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brennan, Liam & Owende, Philip, 2010. "Biofuels from microalgae--A review of technologies for production, processing, and extractions of biofuels and co-products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 557-577, February.
    2. Gaeta-Bernardi, André & Parente, Virginia, 2016. "Organic municipal solid waste (MSW) as feedstock for biodiesel production: A financial feasibility analysis," Renewable Energy, Elsevier, vol. 86(C), pages 1422-1432.
    3. Zhang, Lijie & Cheng, Juan & Pei, Haiyan & Pan, Jianqiang & Jiang, Liqun & Hou, Qingjie & Han, Fei, 2018. "Cultivation of microalgae using anaerobically digested effluent from kitchen waste as a nutrient source for biodiesel production," Renewable Energy, Elsevier, vol. 115(C), pages 276-287.
    4. Katiyar, Richa & Gurjar, B.R. & Bharti, Randhir K. & Kumar, Amit & Biswas, Shalini & Pruthi, Vikas, 2017. "Heterotrophic cultivation of microalgae in photobioreactor using low cost crude glycerol for enhanced biodiesel production," Renewable Energy, Elsevier, vol. 113(C), pages 1359-1365.
    5. Rawat, I. & Ranjith Kumar, R. & Mutanda, T. & Bux, F., 2013. "Biodiesel from microalgae: A critical evaluation from laboratory to large scale production," Applied Energy, Elsevier, vol. 103(C), pages 444-467.
    6. Yang, Jia & Li, Xin & Hu, Hongying & Zhang, Xue & Yu, Yin & Chen, Yongsheng, 2011. "Growth and lipid accumulation properties of a freshwater microalga, Chlorella ellipsoidea YJ1, in domestic secondary effluents," Applied Energy, Elsevier, vol. 88(10), pages 3295-3299.
    7. Cai, Ting & Park, Stephen Y. & Li, Yebo, 2013. "Nutrient recovery from wastewater streams by microalgae: Status and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 360-369.
    8. Chen, Guanyi & Zhao, Liu & Qi, Yun, 2015. "Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: A critical review," Applied Energy, Elsevier, vol. 137(C), pages 282-291.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Xiaoning & Chen, Guangyao & Tao, Yi & Wang, Jun, 2020. "Application of effluent from WWTP in cultivation of four microalgae for nutrients removal and lipid production under the supply of CO2," Renewable Energy, Elsevier, vol. 149(C), pages 708-715.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kligerman, Debora Cynamon & Bouwer, Edward J., 2015. "Prospects for biodiesel production from algae-based wastewater treatment in Brazil: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1834-1846.
    2. Cheah, Wai Yan & Ling, Tau Chuan & Show, Pau Loke & Juan, Joon Ching & Chang, Jo-Shu & Lee, Duu-Jong, 2016. "Cultivation in wastewaters for energy: A microalgae platform," Applied Energy, Elsevier, vol. 179(C), pages 609-625.
    3. Razzak, Shaikh Abdur & Ali, Saad Aldin M. & Hossain, Mohammad Mozahar & deLasa, Hugo, 2017. "Biological CO2 fixation with production of microalgae in wastewater – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 379-390.
    4. Sandra Lage & Zivan Gojkovic & Christiane Funk & Francesco G. Gentili, 2018. "Algal Biomass from Wastewater and Flue Gases as a Source of Bioenergy," Energies, MDPI, vol. 11(3), pages 1-30, March.
    5. Fazal, Tahir & Mushtaq, Azeem & Rehman, Fahad & Ullah Khan, Asad & Rashid, Naim & Farooq, Wasif & Rehman, Muhammad Saif Ur & Xu, Jian, 2018. "Bioremediation of textile wastewater and successive biodiesel production using microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3107-3126.
    6. Alaswad, A. & Dassisti, M. & Prescott, T. & Olabi, A.G., 2015. "Technologies and developments of third generation biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1446-1460.
    7. Tasić, Marija B. & Pinto, Luisa Fernanda Rios & Klein, Bruno Colling & Veljković, Vlada B. & Filho, Rubens Maciel, 2016. "Botryococcus braunii for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 260-270.
    8. Tawfik, Ahmed & Niaz, Haider & Qadeer, Kinza & Qyyum, Muhammad Abdul & Liu, J. Jay & Lee, Moonyong, 2022. "Valorization of algal cells for biomass and bioenergy production from wastewater: Sustainable strategies, challenges, and techno-economic limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    9. Kang, Seongwhan & Heo, Seongmin & Realff, Matthew J. & Lee, Jay H., 2020. "Three-stage design of high-resolution microalgae-based biofuel supply chain using geographic information system," Applied Energy, Elsevier, vol. 265(C).
    10. Sibi G, 2018. "Bioenergy Production from Wastes by Microalgae as Sustainable Approach for Waste Management and to Reduce Resources Depletion," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 13(3), pages 77-80, July.
    11. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    12. Lim, Juin Yau & Teng, Sin Yong & How, Bing Shen & Nam, KiJeon & Heo, SungKu & Máša, Vítězslav & Stehlík, Petr & Yoo, Chang Kyoo, 2022. "From microalgae to bioenergy: Identifying optimally integrated biorefinery pathways and harvest scheduling under uncertainties in predicted climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    13. López-González, D. & Puig-Gamero, M. & Acién, F.G. & García-Cuadra, F. & Valverde, J.L. & Sanchez-Silva, L., 2015. "Energetic, economic and environmental assessment of the pyrolysis and combustion of microalgae and their oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1752-1770.
    14. Ennaceri, Houda & Fischer, Kristina & Schulze, Agnes & Moheimani, Navid Reza, 2022. "Membrane fouling control for sustainable microalgal biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    15. Pooja Kandimalla & Priyanka Vatte & Chandra Sekhar Rao Bandaru, 2021. "Phycoremediation of automobile exhaust gases using green microalgae," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 6301-6322, April.
    16. Bailera, Manuel & Lisbona, Pilar & Romeo, Luis M. & Espatolero, Sergio, 2017. "Power to Gas projects review: Lab, pilot and demo plants for storing renewable energy and CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 292-312.
    17. Giovanna Salbitani & Simona Carfagna, 2021. "Ammonium Utilization in Microalgae: A Sustainable Method for Wastewater Treatment," Sustainability, MDPI, vol. 13(2), pages 1-17, January.
    18. Ana L. Gonçalves & Maria C. M. Alvim-Ferraz & Fernando G. Martins & Manuel Simões & José C. M. Pires, 2016. "Integration of Microalgae-Based Bioenergy Production into a Petrochemical Complex: Techno-Economic Assessment," Energies, MDPI, vol. 9(4), pages 1-17, March.
    19. Severo, Ihana Aguiar & Siqueira, Stefania Fortes & Deprá, Mariany Costa & Maroneze, Mariana Manzoni & Zepka, Leila Queiroz & Jacob-Lopes, Eduardo, 2019. "Biodiesel facilities: What can we address to make biorefineries commercially competitive?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 686-705.
    20. Marwa G. Saad & Noura S. Dosoky & Mohamed S. Zoromba & Hesham M. Shafik, 2019. "Algal Biofuels: Current Status and Key Challenges," Energies, MDPI, vol. 12(10), pages 1-22, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:136:y:2019:i:c:p:671-676. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.