IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i13p3431-d379750.html
   My bibliography  Save this article

Time-Splitting Coupling of WaveDyn with OpenFOAM by Fidelity Limit Identified from a WEC in Extreme Waves

Author

Listed:
  • Pierre-Henri Musiedlak

    (School of Engineering, Computing and Mathematics, University of Plymouth, Plymouth PL4 8AA, UK
    These authors contributed equally to this work.)

  • Edward J. Ransley

    (School of Engineering, Computing and Mathematics, University of Plymouth, Plymouth PL4 8AA, UK
    These authors contributed equally to this work.)

  • Martyn Hann

    (School of Engineering, Computing and Mathematics, University of Plymouth, Plymouth PL4 8AA, UK
    These authors contributed equally to this work.)

  • Benjamin Child

    (DNV-GL, One Linear Park, Avon Street, Bristol BS2 0PS, UK
    These authors contributed equally to this work.)

  • Deborah M. Greaves

    (School of Engineering, Computing and Mathematics, University of Plymouth, Plymouth PL4 8AA, UK
    These authors contributed equally to this work.)

Abstract

Survivability assessment is the complexity compromising Wave energy development. The present study develops a hybrid model aiming to reduce computational power while maintaining accuracy for survivability assessment of a Point-Absorber (PA) Wave Energy Converter (WEC) in extreme Wave Structure Interaction (WSI). This method couples the fast inviscid linear potential flow time-domain model WaveDyn (1.2, DNV-GL, Bristol, UK) with the fully nonlinear viscous Navier–Stokes Computational Fluid Dynamics (CFD) code OpenFOAM (4.2, OpenFOAM.org, London, UK). The coupling technique enables the simulation to change between codes, depending on an indicator relating to wave steepness identified as a function of the confidence in the linear model solution. During the CFD part of the simulation, the OpenFOAM solution is returned to WaveDyn via an additional load term, thus including viscous effects. Developments ensure a satisfactory initialisation of CFD simulation to be achieved from a ‘hot-start’ time, where the wave-field is developed and the device is in motion. The coupled model successfully overcomes identified inaccuracies in the WaveDyn code due to the inviscid assumption and the high computational cost of the OpenFOAM code. Experimental data of a PA response under extreme deterministic events (NewWave) are used to assess WaveDyn’s validity limit as a function of wave steepness, in order to validate CFD code and develop the coupling. The hybrid code demonstrates the applicability of WaveDyn validity limit and shows promising results for long irregular sea-state applications.

Suggested Citation

  • Pierre-Henri Musiedlak & Edward J. Ransley & Martyn Hann & Benjamin Child & Deborah M. Greaves, 2020. "Time-Splitting Coupling of WaveDyn with OpenFOAM by Fidelity Limit Identified from a WEC in Extreme Waves," Energies, MDPI, vol. 13(13), pages 1-26, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3431-:d:379750
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/13/3431/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/13/3431/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Windt, Christian & Davidson, Josh & Ringwood, John V., 2018. "High-fidelity numerical modelling of ocean wave energy systems: A review of computational fluid dynamics-based numerical wave tanks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 610-630.
    2. Ransley, E.J. & Greaves, D. & Raby, A. & Simmonds, D. & Hann, M., 2017. "Survivability of wave energy converters using CFD," Renewable Energy, Elsevier, vol. 109(C), pages 235-247.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oliveira, D. & Lopes de Almeida, J.P.P.G. & Santiago, A. & Rigueiro, C., 2022. "Development of a CFD-based numerical wave tank of a novel multipurpose wave energy converter," Renewable Energy, Elsevier, vol. 199(C), pages 226-245.
    2. A. H. Samitha Weerakoon & Young-Ho Lee & Mohsen Assadi, 2023. "Wave Energy Convertor for Bilateral Offshore Wave Flows: A Computational Fluid Dynamics (CFD) Study," Sustainability, MDPI, vol. 15(9), pages 1-40, April.
    3. Tagliafierro, Bonaventura & Martínez-Estévez, Iván & Domínguez, José M. & Crespo, Alejandro J.C. & Göteman, Malin & Engström, Jens & Gómez-Gesteira, Moncho, 2022. "A numerical study of a taut-moored point-absorber wave energy converter with a linear power take-off system under extreme wave conditions," Applied Energy, Elsevier, vol. 311(C).
    4. Guo, Bingyong & Ringwood, John V., 2021. "Geometric optimisation of wave energy conversion devices: A survey," Applied Energy, Elsevier, vol. 297(C).
    5. Theresa Liegl & Simon Schramm & Philipp Kuhn & Thomas Hamacher, 2023. "Considering Socio-Technical Parameters in Energy System Models—The Current Status and Next Steps," Energies, MDPI, vol. 16(20), pages 1-19, October.
    6. Santo, H. & Taylor, P.H. & Stansby, P.K., 2020. "The performance of the three-float M4 wave energy converter off Albany, on the south coast of western Australia, compared to Orkney (EMEC) in the U.K," Renewable Energy, Elsevier, vol. 146(C), pages 444-459.
    7. Pasta, Edoardo & Faedo, Nicolás & Mattiazzo, Giuliana & Ringwood, John V., 2023. "Towards data-driven and data-based control of wave energy systems: Classification, overview, and critical assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    8. Zhang, Jincheng & Zhao, Xiaowei & Greaves, Deborah & Jin, Siya, 2023. "Modeling of a hinged-raft wave energy converter via deep operator learning and wave tank experiments," Applied Energy, Elsevier, vol. 341(C).
    9. Giannini, Gianmaria & Rosa-Santos, Paulo & Ramos, Victor & Taveira-Pinto, Francisco, 2022. "Wave energy converters design combining hydrodynamic performance and structural assessment," Energy, Elsevier, vol. 249(C).
    10. Chen, Ming & Vivekanandan, Rakesh & Rusch, Curtis J. & Okushemiya, David & Manalang, Dana & Robertson, Bryson & Hollinger, Geoffrey A., 2024. "A unified simulation framework for wave energy powered underwater vehicle docking and charging," Applied Energy, Elsevier, vol. 361(C).
    11. Rosa-Santos, Paulo & Taveira-Pinto, Francisco & Rodríguez, Claudio A. & Ramos, Victor & López, Mario, 2019. "The CECO wave energy converter: Recent developments," Renewable Energy, Elsevier, vol. 139(C), pages 368-384.
    12. Domino, Stefan P. & Horne, Wyatt James, 2022. "Development and deployment of a credible unstructured, six-DOF, implicit low-Mach overset simulation tool for wave energy applications," Renewable Energy, Elsevier, vol. 199(C), pages 1060-1077.
    13. Clemente, D. & Rosa-Santos, P. & Taveira-Pinto, F., 2021. "On the potential synergies and applications of wave energy converters: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    14. Jinming Wu & Yingxue Yao & Dongke Sun & Zhonghua Ni & Malin Göteman, 2019. "Numerical and Experimental Study of the Solo Duck Wave Energy Converter," Energies, MDPI, vol. 12(10), pages 1-19, May.
    15. Gomes, Rui P.F. & Gato, Luís M.C. & Henriques, João C.C. & Portillo, Juan C.C. & Howey, Ben D. & Collins, Keri M. & Hann, Martyn R. & Greaves, Deborah M., 2020. "Compact floating wave energy converters arrays: Mooring loads and survivability through scale physical modelling," Applied Energy, Elsevier, vol. 280(C).
    16. Morten Bech Kramer & Jacob Andersen & Sarah Thomas & Flemming Buus Bendixen & Harry Bingham & Robert Read & Nikolaj Holk & Edward Ransley & Scott Brown & Yi-Hsiang Yu & Thanh Toan Tran & Josh Davidson, 2021. "Highly Accurate Experimental Heave Decay Tests with a Floating Sphere: A Public Benchmark Dataset for Model Validation of Fluid–Structure Interaction," Energies, MDPI, vol. 14(2), pages 1-36, January.
    17. Linnea Sjökvist & Malin Göteman, 2017. "Peak Forces on Wave Energy Linear Generators in Tsunami and Extreme Waves," Energies, MDPI, vol. 10(9), pages 1-19, September.
    18. Christian Windt & Josh Davidson & John V. Ringwood, 2020. "Investigation of Turbulence Modeling for Point-Absorber-Type Wave Energy Converters," Energies, MDPI, vol. 14(1), pages 1-18, December.
    19. Giorgi, Giuseppe & Gomes, Rui P.F. & Henriques, João C.C. & Gato, Luís M.C. & Bracco, Giovanni & Mattiazzo, Giuliana, 2020. "Detecting parametric resonance in a floating oscillating water column device for wave energy conversion: Numerical simulations and validation with physical model tests," Applied Energy, Elsevier, vol. 276(C).
    20. Arredondo-Galeana, Abel & Olbert, Gerrit & Shi, Weichao & Brennan, Feargal, 2023. "Near wake hydrodynamics and structural design of a single foil cycloidal rotor in regular waves," Renewable Energy, Elsevier, vol. 206(C), pages 1020-1035.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3431-:d:379750. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.