IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v105y2017icp735-747.html
   My bibliography  Save this article

Asymmetry of tidal currents off the W.Brittany coast and assessment of tidal energy resource around the Ushant Island

Author

Listed:
  • Thiébaut, Maxime
  • Sentchev, Alexei

Abstract

A method of tidal stream energy resource assessment around the Ushant Island in the Iroise Sea, using surface velocity time series from High Frequency radars (HFR) and ADCP measurements, is presented. Remotely sensed velocities provided by the radars allow to augment the industry standard approach of 3D numerical modeling and in-situ ADCP surveying to make a large-scale quantification of tidal stream resource. They capture the real ocean dynamics and thus provide context on the complex spatial variability of tidal currents that are so often feature at potential tidal energy sites. The observations show current velocities of 4 m/s northwest of the Island and in the Fromveur Strait, with 1 m/s value exceeded 60% and 70% of time respectively. Emphasis is given to the peculiarities in tidal flow asymmetry and to the study of the variation of vertical velocity profiles during different tidal stages. Radar derived velocities reveal a pronounced asymmetry between the flood and ebb flow around the Ushant Island, quantified by dimensionless number a - velocity asymmetry. The largest range of asymmetry variation, from 0.5 to 2.5, is observed in the Fromveur Strait. Harmonic analysis demonstrated that a joint variation of phase of the principal semi-diurnal (M2) and quarter-diurnal (M4) tidal velocity component accounts for flow asymmetry variation in the strait. Asymmetry in current direction is also quantified. ADCP measurements show that the vertical velocity profiles follow a 1/α power law with a power law exponent mostly depending on geographic location than on tidal stage. It was demonstrated that, in the Fromveur Strait, the 1/7 power law is appropriate to characterize the velocity profile. The combination of two sources of data enables characterization of the velocity variations in three spatial dimensions and in time thus increasing accuracy of the hydrokinetic resource assessment from HF radar observations. The estimation shows that the mean technical resource is 50% smaller in the lower half than in the upper half of the water column. The theoretical resource on average is three times higher than the technical resource and appears to be more sensitive to variations in the shape of the velocity profile in the lower layer.

Suggested Citation

  • Thiébaut, Maxime & Sentchev, Alexei, 2017. "Asymmetry of tidal currents off the W.Brittany coast and assessment of tidal energy resource around the Ushant Island," Renewable Energy, Elsevier, vol. 105(C), pages 735-747.
  • Handle: RePEc:eee:renene:v:105:y:2017:i:c:p:735-747
    DOI: 10.1016/j.renene.2016.12.082
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116311417
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.12.082?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Iyer, A.S. & Couch, S.J. & Harrison, G.P. & Wallace, A.R., 2013. "Variability and phasing of tidal current energy around the United Kingdom," Renewable Energy, Elsevier, vol. 51(C), pages 343-357.
    2. Robins, Peter E. & Neill, Simon P. & Lewis, Matt J. & Ward, Sophie L., 2015. "Characterising the spatial and temporal variability of the tidal-stream energy resource over the northwest European shelf seas," Applied Energy, Elsevier, vol. 147(C), pages 510-522.
    3. Neill, Simon P. & Hashemi, M. Reza & Lewis, Matt J., 2014. "The role of tidal asymmetry in characterizing the tidal energy resource of Orkney," Renewable Energy, Elsevier, vol. 68(C), pages 337-350.
    4. Lewis, M.J. & Neill, S.P. & Hashemi, M.R. & Reza, M., 2014. "Realistic wave conditions and their influence on quantifying the tidal stream energy resource," Applied Energy, Elsevier, vol. 136(C), pages 495-508.
    5. O Rourke, Fergal & Boyle, Fergal & Reynolds, Anthony, 2010. "Tidal energy update 2009," Applied Energy, Elsevier, vol. 87(2), pages 398-409, February.
    6. Hashemi, M. Reza & Neill, Simon P. & Robins, Peter E. & Davies, Alan G. & Lewis, Matt J., 2015. "Effect of waves on the tidal energy resource at a planned tidal stream array," Renewable Energy, Elsevier, vol. 75(C), pages 626-639.
    7. Guillou, Nicolas & Chapalain, Georges & Neill, Simon P., 2016. "The influence of waves on the tidal kinetic energy resource at a tidal stream energy site," Applied Energy, Elsevier, vol. 180(C), pages 402-415.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Van Thinh Nguyen & Alina Santa Cruz & Sylvain S. Guillou & Mohamad N. Shiekh Elsouk & Jérôme Thiébot, 2019. "Effects of the Current Direction on the Energy Production of a Tidal Farm: The Case of Raz Blanchard (France)," Energies, MDPI, vol. 12(13), pages 1-20, June.
    2. Calvino, Clément & Furgerot, Lucille & Poizot, Emmanuel & du Bois, Pascal Bailly & Bennis, Anne-Claire, 2023. "Model and method to predict the turbulent kinetic energy induced by tidal currents, application to the wave-induced turbulence," Renewable Energy, Elsevier, vol. 216(C).
    3. Magnier, Maëlys & Delette, Nina & Druault, Philippe & Gaurier, Benoît & Germain, Grégory, 2022. "Experimental study of the shear flow effect on tidal turbine blade loading variation," Renewable Energy, Elsevier, vol. 193(C), pages 744-757.
    4. Cossu, Remo & Penesis, Irene & Nader, Jean-Roch & Marsh, Philip & Perez, Larissa & Couzi, Camille & Grinham, Alistair & Osman, Peter, 2021. "Tidal energy site characterisation in a large tidal channel in Banks Strait, Tasmania, Australia," Renewable Energy, Elsevier, vol. 177(C), pages 859-870.
    5. Sentchev, Alexei & Thiébaut, Maxime & Schmitt, François G., 2020. "Impact of turbulence on power production by a free-stream tidal turbine in real sea conditions," Renewable Energy, Elsevier, vol. 147(P1), pages 1932-1940.
    6. Barbarelli, Silvio & Florio, Gaetano & Lo Zupone, Giacomo & Scornaienchi, Nino Michele, 2018. "First techno-economic evaluation of array configuration of self-balancing tidal kinetic turbines," Renewable Energy, Elsevier, vol. 129(PA), pages 183-200.
    7. Thiébaut, Maxime & Filipot, Jean-François & Maisondieu, Christophe & Damblans, Guillaume & Duarte, Rui & Droniou, Eloi & Chaplain, Nicolas & Guillou, Sylvain, 2020. "A comprehensive assessment of turbulence at a tidal-stream energy site influenced by wind-generated ocean waves," Energy, Elsevier, vol. 191(C).
    8. Thiébaut, Maxime & Quillien, Nolwenn & Maison, Antoine & Gaborieau, Herveline & Ruiz, Nicolas & MacKenzie, Seumas & Connor, Gary & Filipot, Jean-François, 2022. "Investigating the flow dynamics and turbulence at a tidal-stream energy site in a highly energetic estuary," Renewable Energy, Elsevier, vol. 195(C), pages 252-262.
    9. Piano, M. & Neill, S.P. & Lewis, M.J. & Robins, P.E. & Hashemi, M.R. & Davies, A.G. & Ward, S.L. & Roberts, M.J., 2017. "Tidal stream resource assessment uncertainty due to flow asymmetry and turbine yaw misalignment," Renewable Energy, Elsevier, vol. 114(PB), pages 1363-1375.
    10. Ward, Sophie L. & Robins, Peter E. & Lewis, Matt J. & Iglesias, Gregorio & Hashemi, M. Reza & Neill, Simon P., 2018. "Tidal stream resource characterisation in progressive versus standing wave systems," Applied Energy, Elsevier, vol. 220(C), pages 274-285.
    11. Neill, Simon P. & Fairley, Iain A. & Rowlands, Steven & Young, Saul & Hill, Tom & Unsworth, Christopher A. & King, Nicholas & Roberts, Michael J. & Austin, Martin J. & Hughes, Peter & Masters, Ian & O, 2023. "Characterizing the Marine Energy Test Area (META) in Wales, UK," Renewable Energy, Elsevier, vol. 205(C), pages 447-460.
    12. Guillou, Nicolas & Chapalain, Georges, 2017. "Assessing the impact of tidal stream energy extraction on the Lagrangian circulation," Applied Energy, Elsevier, vol. 203(C), pages 321-332.
    13. Thiébaut, Maxime & Sentchev, Alexei & du Bois, Pascal Bailly, 2019. "Merging velocity measurements and modeling to improve understanding of tidal stream resource in Alderney Race," Energy, Elsevier, vol. 178(C), pages 460-470.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neill, Simon P. & Vögler, Arne & Goward-Brown, Alice J. & Baston, Susana & Lewis, Matthew J. & Gillibrand, Philip A. & Waldman, Simon & Woolf, David K., 2017. "The wave and tidal resource of Scotland," Renewable Energy, Elsevier, vol. 114(PA), pages 3-17.
    2. Lewis, M. & Neill, S.P. & Robins, P.E. & Hashemi, M.R., 2015. "Resource assessment for future generations of tidal-stream energy arrays," Energy, Elsevier, vol. 83(C), pages 403-415.
    3. Lewis, M. & Neill, S.P. & Robins, P. & Hashemi, M.R. & Ward, S., 2017. "Characteristics of the velocity profile at tidal-stream energy sites," Renewable Energy, Elsevier, vol. 114(PA), pages 258-272.
    4. Neill, Simon P. & Hashemi, M. Reza & Lewis, Matt J., 2016. "Tidal energy leasing and tidal phasing," Renewable Energy, Elsevier, vol. 85(C), pages 580-587.
    5. Guillou, Nicolas, 2017. "Modelling effects of tidal currents on waves at a tidal stream energy site," Renewable Energy, Elsevier, vol. 114(PA), pages 180-190.
    6. Nicolas Guillou & Georges Chapalain, 2017. "Tidal Turbines’ Layout in a Stream with Asymmetry and Misalignment," Energies, MDPI, vol. 10(11), pages 1-14, November.
    7. Guillou, Nicolas & Chapalain, Georges & Neill, Simon P., 2016. "The influence of waves on the tidal kinetic energy resource at a tidal stream energy site," Applied Energy, Elsevier, vol. 180(C), pages 402-415.
    8. Guillou, Nicolas & Chapalain, Georges, 2017. "Assessing the impact of tidal stream energy extraction on the Lagrangian circulation," Applied Energy, Elsevier, vol. 203(C), pages 321-332.
    9. Robins, Peter E. & Neill, Simon P. & Lewis, Matt J. & Ward, Sophie L., 2015. "Characterising the spatial and temporal variability of the tidal-stream energy resource over the northwest European shelf seas," Applied Energy, Elsevier, vol. 147(C), pages 510-522.
    10. Piano, M. & Neill, S.P. & Lewis, M.J. & Robins, P.E. & Hashemi, M.R. & Davies, A.G. & Ward, S.L. & Roberts, M.J., 2017. "Tidal stream resource assessment uncertainty due to flow asymmetry and turbine yaw misalignment," Renewable Energy, Elsevier, vol. 114(PB), pages 1363-1375.
    11. Guillou, Nicolas & Neill, Simon P. & Robins, Peter E., 2018. "Characterising the tidal stream power resource around France using a high-resolution harmonic database," Renewable Energy, Elsevier, vol. 123(C), pages 706-718.
    12. Goward Brown, Alice J. & Neill, Simon P. & Lewis, Matthew J., 2017. "Tidal energy extraction in three-dimensional ocean models," Renewable Energy, Elsevier, vol. 114(PA), pages 244-257.
    13. Lewis, Matt & McNaughton, James & Márquez-Dominguez, Concha & Todeschini, Grazia & Togneri, Michael & Masters, Ian & Allmark, Matthew & Stallard, Tim & Neill, Simon & Goward-Brown, Alice & Robins, Pet, 2019. "Power variability of tidal-stream energy and implications for electricity supply," Energy, Elsevier, vol. 183(C), pages 1061-1074.
    14. Guillou, Nicolas & Thiébot, Jérôme & Chapalain, Georges, 2019. "Turbines’ effects on water renewal within a marine tidal stream energy site," Energy, Elsevier, vol. 189(C).
    15. Ian Masters & Alison Williams & T. Nick Croft & Michael Togneri & Matt Edmunds & Enayatollah Zangiabadi & Iain Fairley & Harshinie Karunarathna, 2015. "A Comparison of Numerical Modelling Techniques for Tidal Stream Turbine Analysis," Energies, MDPI, vol. 8(8), pages 1-21, July.
    16. Artal, Osvaldo & Pizarro, Oscar & Sepúlveda, Héctor H., 2019. "The impact of spring-neap tidal-stream cycles in tidal energy assessments in the Chilean Inland Sea," Renewable Energy, Elsevier, vol. 139(C), pages 496-506.
    17. Lewis, M.J. & Angeloudis, A. & Robins, P.E. & Evans, P.S. & Neill, S.P., 2017. "Influence of storm surge on tidal range energy," Energy, Elsevier, vol. 122(C), pages 25-36.
    18. Guillou, Nicolas & Thiébot, Jérôme, 2016. "The impact of seabed rock roughness on tidal stream power extraction," Energy, Elsevier, vol. 112(C), pages 762-773.
    19. Evans, P. & Mason-Jones, A. & Wilson, C. & Wooldridge, C. & O'Doherty, T. & O'Doherty, D., 2015. "Constraints on extractable power from energetic tidal straits," Renewable Energy, Elsevier, vol. 81(C), pages 707-722.
    20. Zhang, Yuquan & Peng, Bin & Zheng, Jinhai & Zheng, Yuan & Tang, Qinghong & Liu, Zhiqiang & Xu, Junhui & Wang, Yirong & Fernandez-Rodriguez, Emmanuel, 2023. "The impact of yaw motion on the wake interaction of adjacent floating tidal stream turbines under free surface condition," Energy, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:105:y:2017:i:c:p:735-747. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.