IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v299y2024ics036054422401226x.html
   My bibliography  Save this article

Characterization of the wake generated downstream of a MW-scale tidal turbine in Naru Strait, Japan, based on vessel-mounted ADCP data

Author

Listed:
  • Garcia-Novo, Patxi
  • Inubuse, Masako
  • Matsuno, Takeshi
  • Kyozuka, Yusaku
  • Archer, Philip
  • Matsuo, Hiroshi
  • Henzan, Katsuhiro
  • Sakaguchi, Daisaku

Abstract

With tidal energy demonstration projects with one or a small number of turbines having provided very positive results, the technology is moving to the commissioning and operation of tidal energy farms. For this next step, the understanding of the wakes generated downstream of the turbines is crucial to optimize the array performance. To date, the analysis of wakes of MW-scale tidal turbines has been made by numerical methods or experimentally with downscaled rotors. However, no consensus on a methodology to characterize wakes generated by full-scale turbines based on data measured on-site has yet been reached. The present paper introduces a new method to compare current velocity data measured before and during turbine operation that minimizes the impact of the spatial and temporal variability of tidal currents, thus enabling the estimation of the velocity deficit caused downstream of the turbine. Through this method, a characterization of the near wake was possible, with velocity deficits of 0.537, 0.463, 0.469 and 0.431 at 2D, 3D, 4D and 5D from the turbine. Results from this paper present a very valuable tool for the validation of numerical models aiming to estimate the wake losses in tidal energy farms.

Suggested Citation

  • Garcia-Novo, Patxi & Inubuse, Masako & Matsuno, Takeshi & Kyozuka, Yusaku & Archer, Philip & Matsuo, Hiroshi & Henzan, Katsuhiro & Sakaguchi, Daisaku, 2024. "Characterization of the wake generated downstream of a MW-scale tidal turbine in Naru Strait, Japan, based on vessel-mounted ADCP data," Energy, Elsevier, vol. 299(C).
  • Handle: RePEc:eee:energy:v:299:y:2024:i:c:s036054422401226x
    DOI: 10.1016/j.energy.2024.131453
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422401226X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131453?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guillou, Nicolas & Chapalain, Georges, 2017. "Assessing the impact of tidal stream energy extraction on the Lagrangian circulation," Applied Energy, Elsevier, vol. 203(C), pages 321-332.
    2. Vazquez, A. & Iglesias, G., 2015. "LCOE (levelised cost of energy) mapping: A new geospatial tool for tidal stream energy," Energy, Elsevier, vol. 91(C), pages 192-201.
    3. Ebdon, Tim & Allmark, Matthew J. & O’Doherty, Daphne M. & Mason-Jones, Allan & O’Doherty, Tim & Germain, Gregory & Gaurier, Benoit, 2021. "The impact of turbulence and turbine operating condition on the wakes of tidal turbines," Renewable Energy, Elsevier, vol. 165(P2), pages 96-116.
    4. Zhang, Yuquan & Zang, Wei & Zheng, Jinhai & Cappietti, Lorenzo & Zhang, Jisheng & Zheng, Yuan & Fernandez-Rodriguez, E., 2021. "The influence of waves propagating with the current on the wake of a tidal stream turbine," Applied Energy, Elsevier, vol. 290(C).
    5. Mycek, Paul & Gaurier, Benoît & Germain, Grégory & Pinon, Grégory & Rivoalen, Elie, 2014. "Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part I: One single turbine," Renewable Energy, Elsevier, vol. 66(C), pages 729-746.
    6. López, A. & Morán, J.L. & Núñez, L.R. & Somolinos, J.A., 2020. "Study of a cost model of tidal energy farms in early design phases with parametrization and numerical values. Application to a second-generation device," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    7. Göke, Leonard & Weibezahn, Jens & Kendziorski, Mario, 2023. "How flexible electrification can integrate fluctuating renewables," Energy, Elsevier, vol. 278(PA).
    8. Patxi Garcia-Novo & Daniel Coles & Yusaku Kyozuka & Reiko Yamada & Haruka Moriguchi & Daisaku Sakaguchi, 2023. "Optimization of a Tidal–Wind–Solar System to Enhance Supply–Demand Balancing and Security: A Case Study of the Goto Islands, Japan," Sustainability, MDPI, vol. 15(12), pages 1-17, June.
    9. Rodrigues, N. & Pintassilgo, P. & Calhau, F. & González-Gorbeña, E. & Pacheco, A., 2021. "Cost-benefit analysis of tidal energy production in a coastal lagoon: The case of Ria Formosa – Portugal," Energy, Elsevier, vol. 229(C).
    10. Yang, Zhixue & Ren, Zhouyang & Li, Zhenwen & Xu, Yan & Li, Hui & Li, Wenyuan & Hu, Xiuqiong, 2022. "A comprehensive analysis method for levelized cost of energy in tidal current power generation farms," Renewable Energy, Elsevier, vol. 182(C), pages 982-991.
    11. Vinod, Ashwin & Banerjee, Arindam, 2019. "Performance and near-wake characterization of a tidal current turbine in elevated levels of free stream turbulence," Applied Energy, Elsevier, vol. 254(C).
    12. Culley, D.M. & Funke, S.W. & Kramer, S.C. & Piggott, M.D., 2016. "Integration of cost modelling within the micro-siting design optimisation of tidal turbine arrays," Renewable Energy, Elsevier, vol. 85(C), pages 215-227.
    13. Todeschini, G. & Coles, D. & Lewis, M. & Popov, I. & Angeloudis, A. & Fairley, I. & Johnson, F. & Williams, A.J. & Robins, P. & Masters, I., 2022. "Medium-term variability of the UK's combined tidal energy resource for a net-zero carbon grid," Energy, Elsevier, vol. 238(PA).
    14. Guerra, Maricarmen & Hay, Alex E. & Karsten, Richard & Trowse, Gregory & Cheel, Richard A., 2021. "Turbulent flow mapping in a high-flow tidal channel using mobile acoustic Doppler current profilers," Renewable Energy, Elsevier, vol. 177(C), pages 759-772.
    15. Belloni, C.S.K. & Willden, R.H.J. & Houlsby, G.T., 2017. "An investigation of ducted and open-centre tidal turbines employing CFD-embedded BEM," Renewable Energy, Elsevier, vol. 108(C), pages 622-634.
    16. Lust, Ethan E. & Flack, Karen A. & Luznik, Luksa, 2018. "Survey of the near wake of an axial-flow hydrokinetic turbine in quiescent conditions," Renewable Energy, Elsevier, vol. 129(PA), pages 92-101.
    17. Muhammad Salman Siddiqui & Muhammad Hamza Khalid & Abdul Waheed Badar & Muhammed Saeed & Taimoor Asim, 2022. "Parametric Analysis Using CFD to Study the Impact of Geometric and Numerical Modeling on the Performance of a Small Scale Horizontal Axis Wind Turbine," Energies, MDPI, vol. 15(2), pages 1-21, January.
    18. Guerra, Maricarmen & Thomson, Jim, 2019. "Wake measurements from a hydrokinetic river turbine," Renewable Energy, Elsevier, vol. 139(C), pages 483-495.
    19. Coles, Daniel & Wray, Bevan & Stevens, Rob & Crawford, Scott & Pennock, Shona & Miles, Jon, 2023. "Impacts of tidal stream power on energy system security: An Isle of Wight case study," Applied Energy, Elsevier, vol. 334(C).
    20. Neill, Simon P. & Vögler, Arne & Goward-Brown, Alice J. & Baston, Susana & Lewis, Matthew J. & Gillibrand, Philip A. & Waldman, Simon & Woolf, David K., 2017. "The wave and tidal resource of Scotland," Renewable Energy, Elsevier, vol. 114(PA), pages 3-17.
    21. Nguyen, Van Thinh & Guillou, Sylvain S. & Thiébot, Jérôme & Santa Cruz, Alina, 2016. "Modelling turbulence with an Actuator Disk representing a tidal turbine," Renewable Energy, Elsevier, vol. 97(C), pages 625-635.
    22. Bricker, Jeremy D. & Esteban, Miguel & Takagi, Hiroshi & Roeber, Volker, 2017. "Economic feasibility of tidal stream and wave power in post-Fukushima Japan," Renewable Energy, Elsevier, vol. 114(PA), pages 32-45.
    23. Lam, Wei-Haur & Chen, Long & Hashim, Roslan, 2015. "Analytical wake model of tidal current turbine," Energy, Elsevier, vol. 79(C), pages 512-521.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Zhixue & Ren, Zhouyang & Li, Hui & Pan, Zhen & Xia, Weiyi, 2024. "A review of tidal current power generation farm planning: Methodologies, characteristics and challenges," Renewable Energy, Elsevier, vol. 220(C).
    2. Guerra, Maricarmen & Hay, Alex E., 2024. "Field observations of the wake from a full-scale tidal turbine array," Renewable Energy, Elsevier, vol. 226(C).
    3. Fouz, D.M. & Carballo, R. & López, I. & González, X.P. & Iglesias, G., 2023. "A methodology for cost-effective analysis of hydrokinetic energy projects," Energy, Elsevier, vol. 282(C).
    4. Vinod, Ashwin & Banerjee, Arindam, 2019. "Performance and near-wake characterization of a tidal current turbine in elevated levels of free stream turbulence," Applied Energy, Elsevier, vol. 254(C).
    5. Van Thinh Nguyen & Alina Santa Cruz & Sylvain S. Guillou & Mohamad N. Shiekh Elsouk & Jérôme Thiébot, 2019. "Effects of the Current Direction on the Energy Production of a Tidal Farm: The Case of Raz Blanchard (France)," Energies, MDPI, vol. 12(13), pages 1-20, June.
    6. Vinod, Ashwin & Han, Cong & Banerjee, Arindam, 2021. "Tidal turbine performance and near-wake characteristics in a sheared turbulent inflow," Renewable Energy, Elsevier, vol. 175(C), pages 840-852.
    7. Chen, Yaling & Lin, Binliang & Lin, Jie & Wang, Shujie, 2017. "Experimental study of wake structure behind a horizontal axis tidal stream turbine," Applied Energy, Elsevier, vol. 196(C), pages 82-96.
    8. Lo Brutto, Ottavio A. & Thiébot, Jérôme & Guillou, Sylvain S. & Gualous, Hamid, 2016. "A semi-analytic method to optimize tidal farm layouts – Application to the Alderney Race (Raz Blanchard), France," Applied Energy, Elsevier, vol. 183(C), pages 1168-1180.
    9. Han, Fengwu & Zeng, Jianfeng & Lin, Junjie & Gao, Chong & Ma, Zeyang, 2023. "A novel two-layer nested optimization method for a zero-carbon island integrated energy system, incorporating tidal current power generation," Renewable Energy, Elsevier, vol. 218(C).
    10. Niebuhr, C.M. & Schmidt, S. & van Dijk, M. & Smith, L. & Neary, V.S., 2022. "A review of commercial numerical modelling approaches for axial hydrokinetic turbine wake analysis in channel flow," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    11. Gao, Jinjin & Liu, Han & Lee, Jiyong & Zheng, Yuan & Guala, Michele & Shen, Lian, 2022. "Large-eddy simulation and Co-Design strategy for a drag-type vertical axis hydrokinetic turbine in open channel flows," Renewable Energy, Elsevier, vol. 181(C), pages 1305-1316.
    12. Deng, Xu & Zhang, Jisheng & Lin, Xiangfeng, 2024. "Proposal of actuator line-immersed boundary coupling model for tidal stream turbine modeling with hydrodynamics upon scouring morphology," Energy, Elsevier, vol. 292(C).
    13. Faizan, Muhammad & Badshah, Saeed & Badshah, Mujahid & Haider, Basharat Ali, 2022. "Performance and wake analysis of horizontal axis tidal current turbine using Improved Delayed Detached Eddy Simulation," Renewable Energy, Elsevier, vol. 184(C), pages 740-752.
    14. Su-jin Hwang & Chul H. Jo, 2019. "Tidal Current Energy Resource Distribution in Korea," Energies, MDPI, vol. 12(22), pages 1-15, November.
    15. Zhang, Yuquan & Wei, Wenqian & Zheng, Jinhai & Peng, Bin & Qian, Yaoru & Li, Chengyi & Zheng, Yuan & Fernandez-Rodriguez, Emmanuel & Yu, An, 2023. "Quantifying the surge-induced response of a floating tidal stream turbine under wave-current flows," Energy, Elsevier, vol. 283(C).
    16. Nitin Kolekar & Ashwin Vinod & Arindam Banerjee, 2019. "On Blockage Effects for a Tidal Turbine in Free Surface Proximity," Energies, MDPI, vol. 12(17), pages 1-20, August.
    17. Goss, Z.L. & Coles, D.S. & Kramer, S.C. & Piggott, M.D., 2021. "Efficient economic optimisation of large-scale tidal stream arrays," Applied Energy, Elsevier, vol. 295(C).
    18. Zhang, Yuquan & Zang, Wei & Zheng, Jinhai & Cappietti, Lorenzo & Zhang, Jisheng & Zheng, Yuan & Fernandez-Rodriguez, E., 2021. "The influence of waves propagating with the current on the wake of a tidal stream turbine," Applied Energy, Elsevier, vol. 290(C).
    19. Lande-Sudall, D. & Stallard, T. & Stansby, P., 2019. "Co-located deployment of offshore wind turbines with tidal stream turbine arrays for improved cost of electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 492-503.
    20. Perez, Larissa & Cossu, Remo & Grinham, Alistair & Penesis, Irene, 2021. "Seasonality of turbulence characteristics and wave-current interaction in two prospective tidal energy sites," Renewable Energy, Elsevier, vol. 178(C), pages 1322-1336.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:299:y:2024:i:c:s036054422401226x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.