IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v29y2004i10p1757-1771.html
   My bibliography  Save this article

Development of two-way diffuser for fluid energy conversion system

Author

Listed:
  • Setoguchi, Toshiaki
  • Shiomi, Norimasa
  • Kaneko, Kenji

Abstract

An experimental study was carried out to develop a new type of two-way diffuser suitable for a fluid flow energy conversion system. It is known that the power available from the fluid flow is proportional to the cube of the free stream velocity of the flow. Therefore, in order to take higher power output from the fluid flow, it is very important to construct a suitable system to increase the flow velocity. For a wind turbine, it has been reported that the speed of wind passing through it is dramatically increased by the use of a diffuser with a brim around the turbine. In this study, a new type of two-way diffuser suitable for a flow periodically changing its direction, such as a tidal current, was developed, applying the system to accelerate the wind speed for the wind turbine. The effects of the brim height and the outside body shape on the diffuser performance were experimentally investigated by measurement of the pressure and the velocity distributions along the center axis of the diffuser and around the diffuser. The present study is the first one to clarify the effect of these on diffuser performance.

Suggested Citation

  • Setoguchi, Toshiaki & Shiomi, Norimasa & Kaneko, Kenji, 2004. "Development of two-way diffuser for fluid energy conversion system," Renewable Energy, Elsevier, vol. 29(10), pages 1757-1771.
  • Handle: RePEc:eee:renene:v:29:y:2004:i:10:p:1757-1771
    DOI: 10.1016/j.renene.2004.02.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148104000862
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2004.02.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Clément, Alain & McCullen, Pat & Falcão, António & Fiorentino, Antonio & Gardner, Fred & Hammarlund, Karin & Lemonis, George & Lewis, Tony & Nielsen, Kim & Petroncini, Simona & Pontes, M. -Teresa & Sc, 2002. "Wave energy in Europe: current status and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(5), pages 405-431, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Malipeddi, A.R. & Chatterjee, D., 2012. "Influence of duct geometry on the performance of Darrieus hydroturbine," Renewable Energy, Elsevier, vol. 43(C), pages 292-300.
    2. T., Micha Premkumar & Chatterjee, Dhiman, 2015. "Computational analysis of flow over a cascade of S-shaped hydrofoil of fully reversible pump-turbine used in extracting tidal energy," Renewable Energy, Elsevier, vol. 77(C), pages 240-249.
    3. Belloni, C.S.K. & Willden, R.H.J. & Houlsby, G.T., 2017. "An investigation of ducted and open-centre tidal turbines employing CFD-embedded BEM," Renewable Energy, Elsevier, vol. 108(C), pages 622-634.
    4. Nunes, Matheus M. & Brasil Junior, Antonio C.P. & Oliveira, Taygoara F., 2020. "Systematic review of diffuser-augmented horizontal-axis turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    5. Khan, M.J. & Bhuyan, G. & Iqbal, M.T. & Quaicoe, J.E., 2009. "Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review," Applied Energy, Elsevier, vol. 86(10), pages 1823-1835, October.
    6. Gaden, David L.F. & Bibeau, Eric L., 2010. "A numerical investigation into the effect of diffusers on the performance of hydro kinetic turbines using a validated momentum source turbine model," Renewable Energy, Elsevier, vol. 35(6), pages 1152-1158.
    7. Charles Rajesh Kumar J & Vinod Kumar D & MA Majid, 2019. "Wind energy programme in India: Emerging energy alternatives for sustainable growth," Energy & Environment, , vol. 30(7), pages 1135-1189, November.
    8. Borg, Mitchell G. & Xiao, Qing & Allsop, Steven & Incecik, Atilla & Peyrard, Christophe, 2020. "A numerical performance analysis of a ducted, high-solidity tidal turbine," Renewable Energy, Elsevier, vol. 159(C), pages 663-682.
    9. Kai-Wern Ng & Wei-Haur Lam & Khai-Ching Ng, 2013. "2002–2012: 10 Years of Research Progress in Horizontal-Axis Marine Current Turbines," Energies, MDPI, vol. 6(3), pages 1-30, March.
    10. Gaden, David L.F. & Bibeau, Eric L., 2010. "A numerical investigation into upstream boundary-layer interruption and its potential benefits for river and ocean kinetic hydropower," Renewable Energy, Elsevier, vol. 35(10), pages 2270-2278.
    11. Tunio, Intizar Ali & Shah, Madad Ali & Hussain, Tanweer & Harijan, Khanji & Mirjat, Nayyar Hussain & Memon, Abdul Hameed, 2020. "Investigation of duct augmented system effect on the overall performance of straight blade Darrieus hydrokinetic turbine," Renewable Energy, Elsevier, vol. 153(C), pages 143-154.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Morim, Joao & Cartwright, Nick & Hemer, Mark & Etemad-Shahidi, Amir & Strauss, Darrell, 2019. "Inter- and intra-annual variability of potential power production from wave energy converters," Energy, Elsevier, vol. 169(C), pages 1224-1241.
    2. Mota, P. & Pinto, J.P., 2014. "Wave energy potential along the western Portuguese coast," Renewable Energy, Elsevier, vol. 71(C), pages 8-17.
    3. Rusu, Eugen & Guedes Soares, C., 2009. "Numerical modelling to estimate the spatial distribution of the wave energy in the Portuguese nearshore," Renewable Energy, Elsevier, vol. 34(6), pages 1501-1516.
    4. van Nieuwkoop, Joana C.C. & Smith, Helen C.M. & Smith, George H. & Johanning, Lars, 2013. "Wave resource assessment along the Cornish coast (UK) from a 23-year hindcast dataset validated against buoy measurements," Renewable Energy, Elsevier, vol. 58(C), pages 1-14.
    5. Lisboa, Rodrigo C. & Teixeira, Paulo R.F. & Torres, Fernando R. & Didier, Eric, 2018. "Numerical evaluation of the power output of an oscillating water column wave energy converter installed in the southern Brazilian coast," Energy, Elsevier, vol. 162(C), pages 1115-1124.
    6. Leijon, Mats & Skoglund, Annika & Waters, Rafael & Rehn, Alf & Lindahl, Marcus, 2010. "On the physics of power, energy and economics of renewable electric energy sources – Part I," Renewable Energy, Elsevier, vol. 35(8), pages 1729-1734.
    7. Pasta, Edoardo & Faedo, Nicolás & Mattiazzo, Giuliana & Ringwood, John V., 2023. "Towards data-driven and data-based control of wave energy systems: Classification, overview, and critical assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    8. Wang, Zhifeng & Dong, Sheng & Li, Xue & Guedes Soares, C., 2016. "Assessments of wave energy in the Bohai Sea, China," Renewable Energy, Elsevier, vol. 90(C), pages 145-156.
    9. Mustapa, M.A. & Yaakob, O.B. & Ahmed, Yasser M. & Rheem, Chang-Kyu & Koh, K.K. & Adnan, Faizul Amri, 2017. "Wave energy device and breakwater integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 43-58.
    10. Kasiulis, Egidijus & Punys, Petras & Kofoed, Jens Peter, 2015. "Assessment of theoretical near-shore wave power potential along the Lithuanian coast of the Baltic Sea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 134-142.
    11. Pasquale Contestabile & Vincenzo Ferrante & Diego Vicinanza, 2015. "Wave Energy Resource along the Coast of Santa Catarina (Brazil)," Energies, MDPI, vol. 8(12), pages 1-25, December.
    12. Amarouche, Khalid & Akpınar, Adem & Bachari, Nour El Islam & Houma, Fouzia, 2020. "Wave energy resource assessment along the Algerian coast based on 39-year wave hindcast," Renewable Energy, Elsevier, vol. 153(C), pages 840-860.
    13. Behrens, Sam & Hayward, Jennifer & Hemer, Mark & Osman, Peter, 2012. "Assessing the wave energy converter potential for Australian coastal regions," Renewable Energy, Elsevier, vol. 43(C), pages 210-217.
    14. Xu, Zhe & Zheng, Yuan & Kan, Kan & Chen, Huixiang, 2023. "Flow instability and energy performance of a coastal axial-flow pump as turbine under the influence of upstream waves," Energy, Elsevier, vol. 272(C).
    15. Ozkop, Emre & Altas, Ismail H., 2017. "Control, power and electrical components in wave energy conversion systems: A review of the technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 106-115.
    16. Lavidas, George, 2019. "Energy and socio-economic benefits from the development of wave energy in Greece," Renewable Energy, Elsevier, vol. 132(C), pages 1290-1300.
    17. Wilberforce, Tabbi & El Hassan, Zaki & Durrant, A. & Thompson, J. & Soudan, Bassel & Olabi, A.G., 2019. "Overview of ocean power technology," Energy, Elsevier, vol. 175(C), pages 165-181.
    18. Nasrollahi, Sadaf & Kazemi, Aliyeh & Jahangir, Mohammad-Hossein & Aryaee, Sara, 2023. "Selecting suitable wave energy technology for sustainable development, an MCDM approach," Renewable Energy, Elsevier, vol. 202(C), pages 756-772.
    19. Zhang, Haicheng & Xi, Ru & Xu, Daolin & Wang, Kai & Shi, Qijia & Zhao, Huai & Wu, Bo, 2019. "Efficiency enhancement of a point wave energy converter with a magnetic bistable mechanism," Energy, Elsevier, vol. 181(C), pages 1152-1165.
    20. Mahboubidoust, A. & Ramiar, A., 2017. "Investigation of DBD plasma actuator effect on the aerodynamic and thermodynamic performance of high solidity Wells turbine," Renewable Energy, Elsevier, vol. 112(C), pages 347-364.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:29:y:2004:i:10:p:1757-1771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.