IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v108y2017icp417-424.html
   My bibliography  Save this article

Aqueous-phase reforming of glycerol for production of alkanes over Ni/CexZr1-xO2 nano-catalyst: Effects of the support’s composition

Author

Listed:
  • Bastan, Farzad
  • Kazemeini, Mohammad
  • Larimi, Afsaneh Sadat

Abstract

The aqueous phase reforming (APR) reaction of glycerol considered to be environmentally green. It converted polyols into value added products including; H2 and alkanes. Ni species known for its capability of producing alkane-rich gas under the APR process conditions might be utilized for this purpose. In this research, the conversion of glycerol into alkanes demonstrated using 10wt% Ni/CexZr1-xO2 (with x = 0, 0.3, 0.5, 0.7 and 1) catalysts. In order to better understand the behavior of these materials, they were evaluated physio-chemically through the; XRD, BET, H2-TPR, H2-Chemisorption and TEM analyses. Moreover; performances of the synthesized materials were determined through their reactivity. Results revealed that, this variable depended strongly upon the Ce/Zr ratio in turn affecting the active metal dispersion, BET surface area and particle size distribution of prepared species. Amongst catalysts prepared, an optimum one with composition of 10wt% Ni/Ce0.3Zr0.7O2 was pinpointed. This showed the highest carbon content in the gaseous product (99%), highest alkane selectivity (40%) as well as; a minimum of 25 h of stability. Ultimately, it was concluded that, the overall catalytic performance of the prepared materials lowered in the following order: Ni/Ce0.3Zr0.7O2 > Ni/Ce0.5Zr0.5O2 > Ni/Ce0.7Zr0.3O2 > Ni/ZrO2 > Ni/CeO2.

Suggested Citation

  • Bastan, Farzad & Kazemeini, Mohammad & Larimi, Afsaneh Sadat, 2017. "Aqueous-phase reforming of glycerol for production of alkanes over Ni/CexZr1-xO2 nano-catalyst: Effects of the support’s composition," Renewable Energy, Elsevier, vol. 108(C), pages 417-424.
  • Handle: RePEc:eee:renene:v:108:y:2017:i:c:p:417-424
    DOI: 10.1016/j.renene.2017.02.076
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117301623
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.02.076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marchetti, J.M. & Miguel, V.U. & Errazu, A.F., 2007. "Possible methods for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1300-1311, August.
    2. Seretis, A. & Tsiakaras, P., 2016. "Aqueous phase reforming (APR) of glycerol over platinum supported on Al2O3 catalyst," Renewable Energy, Elsevier, vol. 85(C), pages 1116-1126.
    3. R. D. Cortright & R. R. Davda & J. A. Dumesic, 2002. "Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water," Nature, Nature, vol. 418(6901), pages 964-967, August.
    4. Schwengber, Carine Aline & Alves, Helton José & Schaffner, Rodolfo Andrade & da Silva, Fernando Alves & Sequinel, Rodrigo & Bach, Vanessa Rossato & Ferracin, Ricardo José, 2016. "Overview of glycerol reforming for hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 259-266.
    5. Shapouri, Hosein & Duffield, James A. & Wang, Michael Q., 2002. "The Energy Balance of Corn Ethanol: An Update," Agricultural Economic Reports 34075, United States Department of Agriculture, Economic Research Service.
    6. Kim, Min-Cheol & Kim, Tae-Wan & Kim, Hyung Ju & Kim, Chul-Ung & Bae, Jong Wook, 2016. "Aqueous phase reforming of polyols for hydrogen production using supported PtFe bimetallic catalysts," Renewable Energy, Elsevier, vol. 95(C), pages 396-403.
    7. Tuza, Pablo V. & Manfro, Robinson L. & Ribeiro, Nielson F.P. & Souza, Mariana M.V.M., 2013. "Production of renewable hydrogen by aqueous-phase reforming of glycerol over Ni–Cu catalysts derived from hydrotalcite precursors," Renewable Energy, Elsevier, vol. 50(C), pages 408-414.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Zhi & Li, Jian & Yan, Beibei & Zhou, Shengquan & Zhu, Xiaochao & Cheng, Zhanjun & Chen, Guanyi, 2024. "Thermochemical processing of digestate derived from anaerobic digestion of lignocellulosic biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    2. Larimi, Afsanehsadat & Khorasheh, Farhad, 2018. "Renewable hydrogen production by ethylene glycol steam reforming over Al2O3 supported Ni-Pt bimetallic nano-catalysts," Renewable Energy, Elsevier, vol. 128(PA), pages 188-199.
    3. Liu, Dashuai & Dou, Binlin & Zhang, Hua & Zhao, Longfei & Wu, Kai & Zeng, Pingchao & Chen, Haisheng & Xu, Yujie, 2022. "Comparison of gelatinous and calcined magnesia supported Ni or/and Co-based catalysts for aqueous phase reforming of glycerol," Renewable Energy, Elsevier, vol. 186(C), pages 656-666.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Quispe, César A.G. & Coronado, Christian J.R. & Carvalho Jr., João A., 2013. "Glycerol: Production, consumption, prices, characterization and new trends in combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 475-493.
    2. Liu, Dashuai & Dou, Binlin & Zhang, Hua & Zhao, Longfei & Wu, Kai & Zeng, Pingchao & Chen, Haisheng & Xu, Yujie, 2022. "Comparison of gelatinous and calcined magnesia supported Ni or/and Co-based catalysts for aqueous phase reforming of glycerol," Renewable Energy, Elsevier, vol. 186(C), pages 656-666.
    3. Seretis, Antonios & Tsiakaras, Panagiotis, 2016. "Crude bio-glycerol aqueous phase reforming and hydrogenolysis over commercial SiO2Al2O3 nickel catalyst," Renewable Energy, Elsevier, vol. 97(C), pages 373-379.
    4. Oliveira, A.S. & Baeza, J.A. & Garcia, D. & Saenz de Miera, B. & Calvo, L. & Rodriguez, J.J. & Gilarranz, M.A., 2020. "Effect of basicity in the aqueous phase reforming of brewery wastewater for H2 production," Renewable Energy, Elsevier, vol. 148(C), pages 889-896.
    5. Justicia, Jéssica & Alberto Baeza, José & de Oliveira, Adriana S. & Calvo, Luisa & Heras, Francisco & Gilarranz, Miguel A., 2022. "Aqueous-phase reforming of water-soluble compounds from pyrolysis bio-oils," Renewable Energy, Elsevier, vol. 199(C), pages 895-907.
    6. Schwengber, Carine Aline & Alves, Helton José & Schaffner, Rodolfo Andrade & da Silva, Fernando Alves & Sequinel, Rodrigo & Bach, Vanessa Rossato & Ferracin, Ricardo José, 2016. "Overview of glycerol reforming for hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 259-266.
    7. Meryemoğlu, Bahar & Hasanoğlu, Arif & Kaya, Burçak & Irmak, Sibel & Erbatur, Oktay, 2014. "Hydrogen production from aqueous-phase reforming of sorghum biomass: An application of the response surface methodology," Renewable Energy, Elsevier, vol. 62(C), pages 535-541.
    8. Larimi, Afsanehsadat & Khorasheh, Farhad, 2018. "Renewable hydrogen production by ethylene glycol steam reforming over Al2O3 supported Ni-Pt bimetallic nano-catalysts," Renewable Energy, Elsevier, vol. 128(PA), pages 188-199.
    9. Seretis, A. & Tsiakaras, P., 2016. "Aqueous phase reforming (APR) of glycerol over platinum supported on Al2O3 catalyst," Renewable Energy, Elsevier, vol. 85(C), pages 1116-1126.
    10. Xu, Chunping & Paone, Emilia & Rodríguez-Padrón, Daily & Luque, Rafael & Mauriello, Francesco, 2020. "Reductive catalytic routes towards sustainable production of hydrogen, fuels and chemicals from biomass derived polyols," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    11. Hajjaji, Noureddine & Baccar, Ines & Pons, Marie-Noëlle, 2014. "Energy and exergy analysis as tools for optimization of hydrogen production by glycerol autothermal reforming," Renewable Energy, Elsevier, vol. 71(C), pages 368-380.
    12. Beghin, John C. & Jensen, Helen H., 2008. "Farm policies and added sugars in US diets," Food Policy, Elsevier, vol. 33(6), pages 480-488, December.
    13. Ryan, Lisa & Convery, Frank & Ferreira, Susana, 2006. "Stimulating the use of biofuels in the European Union: Implications for climate change policy," Energy Policy, Elsevier, vol. 34(17), pages 3184-3194, November.
    14. Yevheniia Ziabina & Tetyana Pimonenko, 2020. "The Green Deal Policy for Renewable Energy: A Bibliometric Analysis," Virtual Economics, The London Academy of Science and Business, vol. 3(4), pages 147-168, October.
    15. Md Modassir Khan & Arun Kumar Kadian & Rabindra Prasad Sharma & S M Mozammil Hasnain & Ahmed Mohamed & Adham E. Ragab & Ali Zare & Shatrudhan Pandey, 2023. "Emission Reduction and Performance Enhancement of CI Engine Propelled by Neem Biodiesel-Neem Oil-Decanol-Diesel Blends at High Injection Pressure," Sustainability, MDPI, vol. 15(11), pages 1-18, June.
    16. Abbe Hamilton & Stephen B. Balogh & Adrienna Maxwell & Charles A. S. Hall, 2013. "Efficiency of Edible Agriculture in Canada and the U.S. Over the Past Three and Four Decades," Energies, MDPI, vol. 6(3), pages 1-30, March.
    17. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    18. Mandolesi de Araújo, Carlos Daniel & de Andrade, Claudia Cristina & de Souza e Silva, Erika & Dupas, Francisco Antonio, 2013. "Biodiesel production from used cooking oil: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 445-452.
    19. Milazzo, M.F. & Spina, F. & Primerano, P. & Bart, J.C.J., 2013. "Soy biodiesel pathways: Global prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 579-624.
    20. Feng, Junfeng & Yang, Zhongzhi & Hse, Chung-yun & Su, Qiuli & Wang, Kui & Jiang, Jianchun & Xu, Junming, 2017. "In situ catalytic hydrogenation of model compounds and biomass-derived phenolic compounds for bio-oil upgrading," Renewable Energy, Elsevier, vol. 105(C), pages 140-148.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:108:y:2017:i:c:p:417-424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.