IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v107y2017icp14-22.html
   My bibliography  Save this article

Cucurbituril-protected Cs2.5H0.5PW12O40 for optimized biodiesel production from waste cooking oil

Author

Listed:
  • Li, Lu
  • Zou, Changjun
  • Zhou, Lu
  • Lin, Lang

Abstract

In this research, transesterification of waste cooking oil has been studied. The cucurbit[7]uril-protected Cs2.5H0.5PW12O40 (CsPW-CB[7]) is prepared as a highly efficient catalyst for the direct biodiesel production via the transesterification of waste cooking oil. The CsPW-CB[7] is characterized by X-ray diffraction, FT-IR. Besides, response surface methodology (RSM) was used to optimize the operating parameters on the conversion rate of waste cooking oil. In addition, the maximum conversion rate could reach 95.1% under the optimum experimental conditions that are catalyst of 2 wt%, methanol/oil molar ratio of 11: 1, reaction time of 150 min and temperature of 70 °C. According to the assumption of pseudo-first order reaction, the activation energy of the reaction was calculated as 36.0 kJ mol−1, indicating the reaction is easy to react. The physicochemical properties of biodiesel product could reach the ASTM D6751 standard. The results indicated that the CsPW-CB[7] catalyst showed good catalytic performance and its excellent potential application in biodiesel production. Also, based on the coded parameters, the quadratic regression model with determined coefficients was presented. In addition, the model is significant according to the ANOVA analysis and residual plots.

Suggested Citation

  • Li, Lu & Zou, Changjun & Zhou, Lu & Lin, Lang, 2017. "Cucurbituril-protected Cs2.5H0.5PW12O40 for optimized biodiesel production from waste cooking oil," Renewable Energy, Elsevier, vol. 107(C), pages 14-22.
  • Handle: RePEc:eee:renene:v:107:y:2017:i:c:p:14-22
    DOI: 10.1016/j.renene.2017.01.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117300630
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.01.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saba, Tony & Estephane, Jane & El Khoury, Bilal & El Khoury, Maroulla & Khazma, Mahmoud & El Zakhem, Henri & Aouad, Samer, 2016. "Biodiesel production from refined sunflower vegetable oil over KOH/ZSM5 catalysts," Renewable Energy, Elsevier, vol. 90(C), pages 301-306.
    2. Mathimani, Thangavel & Uma, Lakshmanan & Prabaharan, Dharmar, 2015. "Homogeneous acid catalysed transesterification of marine microalga Chlorella sp. BDUG 91771 lipid – An efficient biodiesel yield and its characterization," Renewable Energy, Elsevier, vol. 81(C), pages 523-533.
    3. Betiku, Eriola & Taiwo, Abiola Ezekiel, 2015. "Modeling and optimization of bioethanol production from breadfruit starch hydrolyzate vis-à-vis response surface methodology and artificial neural network," Renewable Energy, Elsevier, vol. 74(C), pages 87-94.
    4. Zhang, Pingbo & Liu, Yanlei & Fan, Mingming & Jiang, Pingping, 2016. "Catalytic performance of a novel amphiphilic alkaline ionic liquid for biodiesel production: Influence of basicity and conductivity," Renewable Energy, Elsevier, vol. 86(C), pages 99-105.
    5. Azeem, Muhammad Waqar & Hanif, Muhammad Asif & Al-Sabahi, Jamal Nasar & Khan, Asif Ali & Naz, Saima & Ijaz, Aliya, 2016. "Production of biodiesel from low priced, renewable and abundant date seed oil," Renewable Energy, Elsevier, vol. 86(C), pages 124-132.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nahas, Lea & Dahdah, Eliane & Aouad, Samer & El Khoury, Bilal & Gennequin, Cedric & Abi Aad, Edmond & Estephane, Jane, 2023. "Highly efficient scallop seashell-derived catalyst for biodiesel production from sunflower and waste cooking oils: Reaction kinetics and effect of calcination temperature studies," Renewable Energy, Elsevier, vol. 202(C), pages 1086-1095.
    2. Muhammad, Gul & Potchamyou Ngatcha, Ange Douglas & Lv, Yongkun & Xiong, Wenlong & El-Badry, Yaser A. & Asmatulu, Eylem & Xu, Jingliang & Alam, Md Asraful, 2022. "Enhanced biodiesel production from wet microalgae biomass optimized via response surface methodology and artificial neural network," Renewable Energy, Elsevier, vol. 184(C), pages 753-764.
    3. Sajid, Zaman & Khan, Faisal & Zhang, Yan, 2017. "Integration of interpretive structural modelling with Bayesian network for biodiesel performance analysis," Renewable Energy, Elsevier, vol. 107(C), pages 194-203.
    4. Patchimpet, Jaran & Simpson, Benjamin K. & Sangkharak, Kanokphorn & Klomklao, Sappasith, 2020. "Optimization of process variables for the production of biodiesel by transesterification of used cooking oil using lipase from Nile tilapia viscera," Renewable Energy, Elsevier, vol. 153(C), pages 861-869.
    5. Sooraj Kumar & Suhail Ahmed Soomro & Khanji Harijan & Mohammad Aslam Uqaili & Laveet Kumar, 2023. "Advancements of Biochar-Based Catalyst for Improved Production of Biodiesel: A Comprehensive Review," Energies, MDPI, vol. 16(2), pages 1-20, January.
    6. Hosseini, Shokoufe & Moradi, G.R. & Bahrami, Kiumars, 2019. "Synthesis of a novel stabilized basic ionic liquid through immobilization on boehmite nanoparticles: A robust nanocatalyst for biodiesel production from soybean oil," Renewable Energy, Elsevier, vol. 138(C), pages 70-78.
    7. Ziyad, Ben Ahmed & Yousfi, Mohamed & Vander Heyden, Yvan, 2022. "Effects of growing region and maturity stages on oil yield, fatty acid profile and tocopherols of Pistacia atlantica Desf. fruit and their implications on resulting biodiesel," Renewable Energy, Elsevier, vol. 181(C), pages 167-181.
    8. Nirmala, N. & Dawn, S.S., 2021. "Optimization of Chlorella variabilis. MK039712.1 lipid transesterification using Response Surface Methodology and analytical characterization of biodiesel," Renewable Energy, Elsevier, vol. 179(C), pages 1663-1673.
    9. Sahu, Omprakash, 2021. "Appropriateness of rose (Rosa hybrida) for bioethanol conversion with enzymatic hydrolysis: Sustainable development on green fuel production," Energy, Elsevier, vol. 232(C).
    10. Cai, Dongren & Zhan, Guowu & Xiao, Jingran & Zhou, Shu-Feng & Qiu, Ting, 2021. "Design and synthesis of novel amphipathic ionic liquids for biodiesel production from soapberry oil," Renewable Energy, Elsevier, vol. 168(C), pages 779-790.
    11. Kumar, Ajeet & Vachan Tirkey, Jeevan & Kumar Shukla, Shailendra, 2021. "“Comparative energy and economic analysis of different vegetable oil plants for biodiesel production in India”," Renewable Energy, Elsevier, vol. 169(C), pages 266-282.
    12. Narayanan, Mathiyazhagan, 2024. "Promising biorefinery products from marine macro and microalgal biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PB).
    13. Mathimani, Thangavel & Mallick, Nirupama, 2018. "A comprehensive review on harvesting of microalgae for biodiesel – Key challenges and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1103-1120.
    14. Masera, Kemal & Hossain, Abul Kalam, 2023. "Advancement of biodiesel fuel quality and NOx emission control techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    15. Bagchi, Sourav Kumar & Patnaik, Reeza & Sonkar, Sashi & Koley, Shankha & Rao, P. Srinivasa & Mallick, Nirupama, 2019. "Qualitative biodiesel production from a locally isolated chlorophycean microalga Scenedesmus obliquus (Turpin) Kützing GA 45 under closed raceway pond cultivation," Renewable Energy, Elsevier, vol. 139(C), pages 976-987.
    16. Wang, Yongqiang & Zhao, Dan & Chen, Guanyi & Liu, Shejiang & Ji, Na & Ding, Hui & Fu, Jianfeng, 2019. "Preparation of phosphotungstic acid based poly(ionic liquid) and its application to esterification of palmitic acid," Renewable Energy, Elsevier, vol. 133(C), pages 317-324.
    17. Racar, Marko & Šoljić Jerbić, Ivana & Glasovac, Zoran & Jukić, Ante, 2023. "Guanidine catalysts for biodiesel production: Activity, process modelling and optimization," Renewable Energy, Elsevier, vol. 202(C), pages 1046-1053.
    18. Elena Ghedini & Somayeh Taghavi & Federica Menegazzo & Michela Signoretto, 2021. "A Review on the Efficient Catalysts for Algae Transesterification to Biodiesel," Sustainability, MDPI, vol. 13(18), pages 1-20, September.
    19. Vávra, Aleš & Hájek, Martin & Skopal, Frantisek, 2017. "The removal of free fatty acids from methyl ester," Renewable Energy, Elsevier, vol. 103(C), pages 695-700.
    20. Ananya Satapathy & Kankana Saikia & Samuel Lalthazuala Rokhum, 2023. "Biodiesel Production Using a Banana Peel Extract-Mediated Highly Basic Heterogeneous Nanocatalyst," Sustainability, MDPI, vol. 15(14), pages 1-21, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:107:y:2017:i:c:p:14-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.