IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v96y2011i10p1396-1401.html
   My bibliography  Save this article

Throughput centered prioritization of machines in transfer lines

Author

Listed:
  • Pascual, R.
  • Godoy, D.
  • Louit, D.M.

Abstract

In an environment of scarce resources and complex production systems, prioritizing is key to confront the challenge of managing physical assets. In the literature, there exist a number of techniques to prioritize maintenance decisions that consider safety, technical and business perspectives. However, the effect of risk mitigating elements—such as intermediate buffers in production lines—on prioritization has not yet been investigated in depth. In this line, the work proposes a user-friendly graphical technique called the system efficiency influence diagram (SEID). Asset managers may use SEID to identify machines that have a greater impact on the system throughput, and thus set prioritized maintenance policies and/or redesign of buffers capacities. The tool provides insight to the analyst as it decomposes the influence of a given machine on the system throughput as a product of two elements: (1) system influence efficiency factor and (2) machine unavailability factor. We illustrate its applicability using three case studies: a four-machine transfer line, a vehicle assembly line, and an open-pit mining conveyor system. The results confirm that the machines with greater unavailability factors are not necessarily the most important for the efficiency of the production line, as it is the case when no intermediate buffers exist. As a decision aid tool, SEID emphasizes the need to move from a maintenance vision focused on machine availability, to a systems engineering perspective.

Suggested Citation

  • Pascual, R. & Godoy, D. & Louit, D.M., 2011. "Throughput centered prioritization of machines in transfer lines," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1396-1401.
  • Handle: RePEc:eee:reensy:v:96:y:2011:i:10:p:1396-1401
    DOI: 10.1016/j.ress.2011.05.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832011001049
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2011.05.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pasquini, Alberto & Pozzi, Simone & Save, Luca, 2011. "A critical view of severity classification in risk assessment methods," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 53-63.
    2. Selvik, J.T. & Aven, T., 2011. "A framework for reliability and risk centered maintenance," Reliability Engineering and System Safety, Elsevier, vol. 96(2), pages 324-331.
    3. Pascual, R. & Del Castillo, G. & Louit, D. & Knights, P., 2009. "Business-oriented prioritization: A novel graphical technique," Reliability Engineering and System Safety, Elsevier, vol. 94(8), pages 1308-1313.
    4. Crespo Marquez, Adolfo & Gupta, Jatinder N.D., 2006. "Contemporary maintenance management: process, framework and supporting pillars," Omega, Elsevier, vol. 34(3), pages 313-326, June.
    5. Mitchell Burman & Stanley B. Gershwin & Curtis Suyematsu, 1998. "Hewlett-Packard Uses Operations Research to Improve the Design of a Printer Production Line," Interfaces, INFORMS, vol. 28(1), pages 24-36, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Orlando Durán & Paulo Andrés Durán, 2019. "Prioritization of Physical Assets for Maintenance and Production Sustainability," Sustainability, MDPI, vol. 11(16), pages 1-17, August.
    2. Zhou, Yifan & Lin, Tian Ran & Sun, Yong & Bian, Yangqing & Ma, Lin, 2015. "An effective approach to reducing strategy space for maintenance optimisation of multistate series–parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 40-53.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marlow, David R. & Beale, David J. & Mashford, John S., 2012. "Risk-based prioritization and its application to inspection of valves in the water sector," Reliability Engineering and System Safety, Elsevier, vol. 100(C), pages 67-74.
    2. Dharmaraja, S. & Vinayak, Resham & Trivedi, Kishor S., 2016. "Reliability and survivability of vehicular ad hoc networks: An analytical approach," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 28-38.
    3. Dodd, Ian & Habli, Ibrahim, 2012. "Safety certification of airborne software: An empirical study," Reliability Engineering and System Safety, Elsevier, vol. 98(1), pages 7-23.
    4. Alberti, Alexandre R. & Cavalcante, Cristiano A.V. & Scarf, Philip & Silva, André L.O., 2018. "Modelling inspection and replacement quality for a protection system," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 145-153.
    5. Hao Li & Shanghua Mi & Qifeng Li & Xiaoyu Wen & Dongping Qiao & Guofu Luo, 2020. "A scheduling optimization method for maintenance, repair and operations service resources of complex products," Journal of Intelligent Manufacturing, Springer, vol. 31(7), pages 1673-1691, October.
    6. Stefan Helber, 2000. "Kapitalwertorientierte Pufferallokation in stochastischen Fließproduktionssystemen," Schmalenbach Journal of Business Research, Springer, vol. 52(3), pages 211-233, May.
    7. Tang, Yang & Liu, Qingyou & Jing, Jiajia & Yang, Yan & Zou, Zhengwei, 2017. "A framework for identification of maintenance significant items in reliability centered maintenance," Energy, Elsevier, vol. 118(C), pages 1295-1303.
    8. George Liberopoulos & Panagiotis Tsarouhas, 2002. "Systems Analysis Speeds Up Chipita's Food-Processing Line," Interfaces, INFORMS, vol. 32(3), pages 62-76, June.
    9. Arthur H.A. Melani & Carlos A. Murad & Adherbal Caminada Netto & Gilberto F.M. Souza & Silvio I. Nabeta, 2019. "Maintenance Strategy Optimization of a Coal-Fired Power Plant Cooling Tower through Generalized Stochastic Petri Nets," Energies, MDPI, vol. 12(10), pages 1-28, May.
    10. Bouvard, K. & Artus, S. & Bérenguer, C. & Cocquempot, V., 2011. "Condition-based dynamic maintenance operations planning & grouping. Application to commercial heavy vehicles," Reliability Engineering and System Safety, Elsevier, vol. 96(6), pages 601-610.
    11. Cheng, Minghui & Frangopol, Dan M., 2022. "Life-cycle optimization of structural systems based on cumulative prospect theory: Effects of the reference point and risk attitudes," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    12. Pablo Viveros & Enrico Zio & Christopher Nikulin & Raúl Stegmaier & Gloria Bravo, 2014. "Resolving equipment failure causes by root cause analysis and theory of inventive problem solving," Journal of Risk and Reliability, , vol. 228(1), pages 93-111, February.
    13. Peter C. Bell & Chris K. Anderson, 2002. "In Search of Strategic Operations Research/Management Science," Interfaces, INFORMS, vol. 32(2), pages 28-40, April.
    14. Cha, Guesik & Park, Junseok & Moon, Ilkyeong, 2023. "Military aircraft flight and maintenance planning model considering heterogeneous maintenance tasks," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    15. Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2022. "A multi-objective maintenance strategy optimization framework for offshore wind farms considering uncertainty," Applied Energy, Elsevier, vol. 321(C).
    16. Petchrompo, Sanyapong & Parlikad, Ajith Kumar, 2019. "A review of asset management literature on multi-asset systems," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 181-201.
    17. Shi, Yan & Lu, Zhenzhou & Huang, Hongzhong & Liu, Yu & Li, Yanfeng & Zio, Enrico & Zhou, Yicheng, 2022. "A new preventive maintenance strategy optimization model considering lifecycle safety," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    18. Vrignat, Pascal & Kratz, Frédéric & Avila, Manuel, 2022. "Sustainable manufacturing, maintenance policies, prognostics and health management: A literature review," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    19. Barberá, Luis & Crespo, Adolfo & Viveros, Pablo & Stegmaier, Raúl, 2014. "A case study of GAMM (graphical analysis for maintenance management) in the mining industry," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 113-120.
    20. Cipollini, Francesca & Oneto, Luca & Coraddu, Andrea & Murphy, Alan John & Anguita, Davide, 2018. "Condition-based maintenance of naval propulsion systems: Data analysis with minimal feedback," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 12-23.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:96:y:2011:i:10:p:1396-1401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.