IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v95y2010i10p1011-1039.html
   My bibliography  Save this article

Probabilistic risk assessment modeling of digital instrumentation and control systems using two dynamic methodologies

Author

Listed:
  • Aldemir, T.
  • Guarro, S.
  • Mandelli, D.
  • Kirschenbaum, J.
  • Mangan, L.A.
  • Bucci, P.
  • Yau, M.
  • Ekici, E.
  • Miller, D.W.
  • Sun, X.
  • Arndt, S.A.

Abstract

The Markov/cell-to-cell mapping technique (CCMT) and the dynamic flowgraph methodology (DFM) are two system logic modeling methodologies that have been proposed to address the dynamic characteristics of digital instrumentation and control (I&C) systems and provide risk-analytical capabilities that supplement those provided by traditional probabilistic risk assessment (PRA) techniques for nuclear power plants. Both methodologies utilize a discrete state, multi-valued logic representation of the digital I&C system. For probabilistic quantification purposes, both techniques require the estimation of the probabilities of basic system failure modes, including digital I&C software failure modes, that appear in the prime implicants identified as contributors to a given system event of interest. As in any other system modeling process, the accuracy and predictive value of the models produced by the two techniques, depend not only on the intrinsic features of the modeling paradigm, but also and to a considerable extent on information and knowledge available to the analyst, concerning the system behavior and operation rules under normal and off-nominal conditions, and the associated controlled/monitored process dynamics. The application of the two methodologies is illustrated using a digital feedwater control system (DFWCS) similar to that of an operating pressurized water reactor. This application was carried out to demonstrate how the use of either technique, or both, can facilitate the updating of an existing nuclear power plant PRA model following an upgrade of the instrumentation and control system from analog to digital. Because of scope limitations, the focus of the demonstration of the methodologies was intentionally limited to aspects of digital I&C system behavior for which probabilistic data was on hand or could be generated within the existing project bounds of time and resources. The data used in the probabilistic quantification portion of the process were gathered partially from fault injection experiments with the DFWCS, separately conducted under conservative assumptions, partially from operating experience, and partially from generic data bases. The purpose of the quantification portion of the process was, purely to demonstrate the PRA-updating use and application of the methodologies, without making any particular claim regarding the specific validity and predictive value of the data utilized to illustrate the quantitative risk calculations produced from the qualitative information analytically generated by the models. A comparison of the results obtained from the Markov/CCMT and DFM regarding the event sequences leading to DFWCS failure modes show qualitative and quantitative consistency for the risk scenarios and sequences under consideration. The study also shows that: (a) the risk significance of the timing of system component failures may depend on factors that include the actual variability of initiating conditions of a dynamic transient, even within the nominal control range and (b) the range of dynamic outcomes may also be dependent on the choice of the assumed basic system-component failure modes included in the models, regardless of whether some of these would or would not be considered to have direct safety implications according to the traditional safety/non-safety equipment classifications.

Suggested Citation

  • Aldemir, T. & Guarro, S. & Mandelli, D. & Kirschenbaum, J. & Mangan, L.A. & Bucci, P. & Yau, M. & Ekici, E. & Miller, D.W. & Sun, X. & Arndt, S.A., 2010. "Probabilistic risk assessment modeling of digital instrumentation and control systems using two dynamic methodologies," Reliability Engineering and System Safety, Elsevier, vol. 95(10), pages 1011-1039.
  • Handle: RePEc:eee:reensy:v:95:y:2010:i:10:p:1011-1039
    DOI: 10.1016/j.ress.2010.04.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832010000967
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2010.04.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bucci, Paolo & Kirschenbaum, Jason & Mangan, L. Anthony & Aldemir, Tunc & Smith, Curtis & Wood, Ted, 2008. "Construction of event-tree/fault-tree models from a Markov approach to dynamic system reliability," Reliability Engineering and System Safety, Elsevier, vol. 93(11), pages 1616-1627.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shin, Sung-Min & Lee, Sang Hun & Shin, Seung Ki, 2022. "A novel approach for quantitative importance analysis of safety DI&C systems in the nuclear field," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    2. Favarò, Francesca M. & Saleh, Joseph H., 2016. "Toward risk assessment 2.0: Safety supervisory control and model-based hazard monitoring for risk-informed safety interventions," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 316-330.
    3. Ilkka Karanta, 2013. "Implementing dynamic flowgraph methodology models with logic programs," Journal of Risk and Reliability, , vol. 227(3), pages 302-314, June.
    4. Jenab, K. & Sarfaraz, A. & Dhillon, B.S. & Seyed Hosseini, S.M., 2012. "Dynamic MLD analysis with flow graphs," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 80-85.
    5. Thieme, Christoph A. & Mosleh, Ali & Utne, Ingrid B. & Hegde, Jeevith, 2020. "Incorporating software failure in risk analysis – Part 1: Software functional failure mode classification," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    6. McNelles, Phillip & Zeng, Zhao Chang & Renganathan, Guna & Lamarre, Greg & Akl, Yolande & Lu, Lixuan, 2016. "A comparison of Fault Trees and the Dynamic Flowgraph Methodology for the analysis of FPGA-based safety systems Part 1: Reactor trip logic loop reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 135-150.
    7. McNelles, Phillip & Renganathan, Guna & Zeng, Zhao Chang & Chirila, Marius & Lu, Lixuan, 2019. "A comparison of fault trees and the Dynamic Flowgraph Methodology for the analysis of FPGA-based safety systems part 2: Theoretical investigations," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 60-83.
    8. Yang, Jun & Aldemir, Tunc, 2016. "An algorithm for the computationally efficient deductive implementation of the Markov/Cell-to-Cell-Mapping Technique for risk significant scenario identification," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 1-8.
    9. Bolbot, Victor & Theotokatos, Gerasimos & Bujorianu, Luminita Manuela & Boulougouris, Evangelos & Vassalos, Dracos, 2019. "Vulnerabilities and safety assurance methods in Cyber-Physical Systems: A comprehensive review," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 179-193.
    10. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    11. Ghostine, Rony & Thiriet, Jean-Marc & Aubry, Jean-François, 2011. "Variable delays and message losses: Influence on the reliability of a control loop," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 160-171.
    12. Yoo, Heejong & Heo, Gyunyoung, 2023. "Analysis of site operating state contributions for multi-unit PSA with Korean NPP Sites," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    13. Bas, Esra, 2011. "An investment plan for preventing child injuries using risk priority number of failure mode and effects analysis methodology and a multi-objective, multi-dimensional mixed 0-1 knapsack model," Reliability Engineering and System Safety, Elsevier, vol. 96(7), pages 748-756.
    14. Lee, Sang Hun & Lee, Seung Jun & Shin, Sung Min & Lee, Eun-chan & Kang, Hyun Gook, 2020. "Exhaustive testing of safety-critical software for reactor protection system," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    15. Tyrväinen, T., 2013. "Risk importance measures in the dynamic flowgraph methodology," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 35-50.
    16. Brissaud, Florent & Smidts, Carol & Barros, Anne & Bérenguer, Christophe, 2011. "Dynamic reliability of digital-based transmitters," Reliability Engineering and System Safety, Elsevier, vol. 96(7), pages 793-813.
    17. Yang, Jun & Zou, Bowen & Yang, Ming, 2019. "Bidirectional implementation of Markov/CCMT for dynamic reliability analysis with application to digital I&C systems," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 278-290.
    18. Babykina, Génia & Brînzei, Nicolae & Aubry, Jean-François & Deleuze, Gilles, 2016. "Modeling and simulation of a controlled steam generator in the context of dynamic reliability using a Stochastic Hybrid Automaton," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 115-136.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Junyung & Shah, Asad Ullah Amin & Kang, Hyun Gook, 2020. "Dynamic risk assessment with bayesian network and clustering analysis," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    2. Bjorkman, Kim, 2013. "Solving dynamic flowgraph methodology models using binary decision diagrams," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 206-216.
    3. Wu, Daohua & Zheng, Wei, 2018. "Formal model-based quantitative safety analysis using timed Coloured Petri Nets," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 62-79.
    4. Guanquan, Chu & Jinhui, Wang, 2012. "Study on probability distribution of fire scenarios in risk assessment to emergency evacuation," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 24-32.
    5. Mandelli, Diego & Yilmaz, Alper & Aldemir, Tunc & Metzroth, Kyle & Denning, Richard, 2013. "Scenario clustering and dynamic probabilistic risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 146-160.
    6. Maidana, Renan G. & Parhizkar, Tarannom & Gomola, Alojz & Utne, Ingrid B. & Mosleh, Ali, 2023. "Supervised dynamic probabilistic risk assessment: Review and comparison of methods," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    7. Dhople, S.V. & DeVille, L. & Domínguez-García, A.D., 2014. "A Stochastic Hybrid Systems framework for analysis of Markov reward models," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 158-170.
    8. Wu, Xingguang & Huang, Huirong & Xie, Jianyu & Lu, Meixing & Wang, Shaobo & Li, Wang & Huang, Yixuan & Yu, Weichao & Sun, Xiaobo, 2023. "A novel dynamic risk assessment method for the petrochemical industry using bow-tie analysis and Bayesian network analysis method based on the methodological framework of ARAMIS project," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    9. Raoni, Rafael & Secchi, Argimiro R., 2019. "Procedures to model and solve probabilistic dynamic system problems," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    10. KIM, Junyung & ZHAO, Xingang & SHAH, Asad Ullah Amin & KANG, Hyun Gook, 2021. "System risk quantification and decision making support using functional modeling and dynamic Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    11. Zengkai Liu & Yonghong Liu & Baoping Cai, 2014. "Reliability Analysis of the Electrical Control System of Subsea Blowout Preventers Using Markov Models," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-9, November.
    12. Park, Jong Woo & Lee, Seung Jun, 2022. "Simulation optimization framework for dynamic probabilistic safety assessment," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    13. Khakzad, Nima & Khan, Faisal & Amyotte, Paul, 2012. "Dynamic risk analysis using bow-tie approach," Reliability Engineering and System Safety, Elsevier, vol. 104(C), pages 36-44.
    14. Lam, C.Y. & Cruz, A.M., 2019. "Risk analysis for consumer-level utility gas and liquefied petroleum gas incidents using probabilistic network modeling: A case study of gas incidents in Japan," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 198-212.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:95:y:2010:i:10:p:1011-1039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.