IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0113525.html
   My bibliography  Save this article

Reliability Analysis of the Electrical Control System of Subsea Blowout Preventers Using Markov Models

Author

Listed:
  • Zengkai Liu
  • Yonghong Liu
  • Baoping Cai

Abstract

Reliability analysis of the electrical control system of a subsea blowout preventer (BOP) stack is carried out based on Markov method. For the subsea BOP electrical control system used in the current work, the 3-2-1-0 and 3-2-0 input voting schemes are available. The effects of the voting schemes on system performance are evaluated based on Markov models. In addition, the effects of failure rates of the modules and repair time on system reliability indices are also investigated.

Suggested Citation

  • Zengkai Liu & Yonghong Liu & Baoping Cai, 2014. "Reliability Analysis of the Electrical Control System of Subsea Blowout Preventers Using Markov Models," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-9, November.
  • Handle: RePEc:plo:pone00:0113525
    DOI: 10.1371/journal.pone.0113525
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0113525
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0113525&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0113525?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bucci, Paolo & Kirschenbaum, Jason & Mangan, L. Anthony & Aldemir, Tunc & Smith, Curtis & Wood, Ted, 2008. "Construction of event-tree/fault-tree models from a Markov approach to dynamic system reliability," Reliability Engineering and System Safety, Elsevier, vol. 93(11), pages 1616-1627.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. María Luz Gámiz & Delia Montoro-Cazorla & María del Carmen Segovia-García & Rafael Pérez-Ocón, 2022. "MoMA Algorithm: A Bottom-Up Modeling Procedure for a Modular System under Environmental Conditions," Mathematics, MDPI, vol. 10(19), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Junyung & Shah, Asad Ullah Amin & Kang, Hyun Gook, 2020. "Dynamic risk assessment with bayesian network and clustering analysis," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    2. Aldemir, T. & Guarro, S. & Mandelli, D. & Kirschenbaum, J. & Mangan, L.A. & Bucci, P. & Yau, M. & Ekici, E. & Miller, D.W. & Sun, X. & Arndt, S.A., 2010. "Probabilistic risk assessment modeling of digital instrumentation and control systems using two dynamic methodologies," Reliability Engineering and System Safety, Elsevier, vol. 95(10), pages 1011-1039.
    3. Bjorkman, Kim, 2013. "Solving dynamic flowgraph methodology models using binary decision diagrams," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 206-216.
    4. Wu, Daohua & Zheng, Wei, 2018. "Formal model-based quantitative safety analysis using timed Coloured Petri Nets," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 62-79.
    5. Guanquan, Chu & Jinhui, Wang, 2012. "Study on probability distribution of fire scenarios in risk assessment to emergency evacuation," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 24-32.
    6. Mandelli, Diego & Yilmaz, Alper & Aldemir, Tunc & Metzroth, Kyle & Denning, Richard, 2013. "Scenario clustering and dynamic probabilistic risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 146-160.
    7. Maidana, Renan G. & Parhizkar, Tarannom & Gomola, Alojz & Utne, Ingrid B. & Mosleh, Ali, 2023. "Supervised dynamic probabilistic risk assessment: Review and comparison of methods," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    8. Dhople, S.V. & DeVille, L. & Domínguez-García, A.D., 2014. "A Stochastic Hybrid Systems framework for analysis of Markov reward models," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 158-170.
    9. Wu, Xingguang & Huang, Huirong & Xie, Jianyu & Lu, Meixing & Wang, Shaobo & Li, Wang & Huang, Yixuan & Yu, Weichao & Sun, Xiaobo, 2023. "A novel dynamic risk assessment method for the petrochemical industry using bow-tie analysis and Bayesian network analysis method based on the methodological framework of ARAMIS project," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    10. Raoni, Rafael & Secchi, Argimiro R., 2019. "Procedures to model and solve probabilistic dynamic system problems," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    11. KIM, Junyung & ZHAO, Xingang & SHAH, Asad Ullah Amin & KANG, Hyun Gook, 2021. "System risk quantification and decision making support using functional modeling and dynamic Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    12. Park, Jong Woo & Lee, Seung Jun, 2022. "Simulation optimization framework for dynamic probabilistic safety assessment," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    13. Khakzad, Nima & Khan, Faisal & Amyotte, Paul, 2012. "Dynamic risk analysis using bow-tie approach," Reliability Engineering and System Safety, Elsevier, vol. 104(C), pages 36-44.
    14. Lam, C.Y. & Cruz, A.M., 2019. "Risk analysis for consumer-level utility gas and liquefied petroleum gas incidents using probabilistic network modeling: A case study of gas incidents in Japan," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 198-212.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0113525. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.