IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v115y2013icp146-160.html
   My bibliography  Save this article

Scenario clustering and dynamic probabilistic risk assessment

Author

Listed:
  • Mandelli, Diego
  • Yilmaz, Alper
  • Aldemir, Tunc
  • Metzroth, Kyle
  • Denning, Richard

Abstract

A challenging aspect of dynamic methodologies for probabilistic risk assessment (PRA), such as the Dynamic Event Tree (DET) methodology, is the large number of scenarios generated for a single initiating event. Such large amounts of information can be difficult to organize for extracting useful information. Furthermore, it is not often sufficient to merely calculate a quantitative value for the risk and its associated uncertainties. The development of risk insights that can increase system safety and improve system performance requires the interpretation of scenario evolutions and the principal characteristics of the events that contribute to the risk. For a given scenario dataset, it can be useful to identify the scenarios that have similar behaviors (i.e., identify the most evident classes), and decide for each event sequence, to which class it belongs (i.e., classification). It is shown how it is possible to accomplish these two objectives using the Mean-Shift Methodology (MSM). The MSM is a kernel-based, non-parametric density estimation technique that is used to find the modes of an unknown data distribution. The algorithm developed finds the modes of the data distribution in the state space corresponding to regions with highest data density as well as grouping the scenarios generated into clusters based on scenario temporal similarities. The MSM is illustrated using the data generated by a DET algorithm for the analysis of a simple level/temperature controller and reactor vessel auxiliary cooling system.

Suggested Citation

  • Mandelli, Diego & Yilmaz, Alper & Aldemir, Tunc & Metzroth, Kyle & Denning, Richard, 2013. "Scenario clustering and dynamic probabilistic risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 146-160.
  • Handle: RePEc:eee:reensy:v:115:y:2013:i:c:p:146-160
    DOI: 10.1016/j.ress.2013.02.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832013000483
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2013.02.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bucci, Paolo & Kirschenbaum, Jason & Mangan, L. Anthony & Aldemir, Tunc & Smith, Curtis & Wood, Ted, 2008. "Construction of event-tree/fault-tree models from a Markov approach to dynamic system reliability," Reliability Engineering and System Safety, Elsevier, vol. 93(11), pages 1616-1627.
    2. Zio, E., 2009. "Reliability engineering: Old problems and new challenges," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 125-141.
    3. Li, Baibing & Martin, Elaine B. & Morris, A. Julian, 2002. "On principal component analysis in L1," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 471-474, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Xiaoyu & Tamaki, Hitoshi & Sugiyama, Tomoyuki & Maruyama, Yu, 2022. "Dynamic probabilistic risk assessment of nuclear power plants using multi-fidelity simulations," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    2. Kim, Junyung & Shah, Asad Ullah Amin & Kang, Hyun Gook, 2020. "Dynamic risk assessment with bayesian network and clustering analysis," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    3. Turati, Pietro & Pedroni, Nicola & Zio, Enrico, 2017. "Simulation-based exploration of high-dimensional system models for identifying unexpected events," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 317-330.
    4. Jawon Kim & Jaesoo Kim & Hangbae Chang, 2020. "Research on Behavior-Based Data Leakage Incidents for the Sustainable Growth of an Organization," Sustainability, MDPI, vol. 12(15), pages 1-14, August.
    5. Park, Jong Woo & Lee, Seung Jun, 2022. "Simulation optimization framework for dynamic probabilistic safety assessment," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    6. Markéta Horejšová & Sebastiano Vitali & Miloš Kopa & Vittorio Moriggia, 2020. "Evaluation of scenario reduction algorithms with nested distance," Computational Management Science, Springer, vol. 17(2), pages 241-275, June.
    7. Kaneko, Fujio & Yuzui, Tomohiro, 2023. "Novel method of dynamic event tree keeping the number of simulations in risk analysis small," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    8. Ibánez, L. & Hortal, J. & Queral, C. & Gómez-Magán, J. & Sánchez-Perea, M. & Fernández, I. & Meléndez, E. & Expósito, A. & Izquierdo, J.M. & Gil, J. & Marrao, H. & Villalba-Jabonero, E., 2016. "Application of the Integrated Safety Assessment methodology to safety margins. Dynamic Event Trees, Damage Domains and Risk Assessment," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 170-193.
    9. Raoni, Rafael & Secchi, Argimiro R., 2019. "Procedures to model and solve probabilistic dynamic system problems," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    10. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    11. Hu, Yunwei & Parhizkar, Tarannom & Mosleh, Ali, 2022. "Guided simulation for dynamic probabilistic risk assessment of complex systems: Concept, method, and application," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    12. Maidana, Renan G. & Parhizkar, Tarannom & Gomola, Alojz & Utne, Ingrid B. & Mosleh, Ali, 2023. "Supervised dynamic probabilistic risk assessment: Review and comparison of methods," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    13. Rebollo, M.J. & Queral, C. & Jimenez, G. & Gomez-Magan, J. & Meléndez, E. & Sanchez-Perea, M., 2016. "Evaluation of the offsite dose contribution to the global risk in a Steam Generator Tube Rupture scenario," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 32-48.
    14. Maljovec, D. & Liu, S. & Wang, B. & Mandelli, D. & Bremer, P.-T. & Pascucci, V. & Smith, C., 2016. "Analyzing simulation-based PRA data through traditional and topological clustering: A BWR station blackout case study," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 262-276.
    15. Haider, Sajjad & Rizvi, Rida e Zahra & Walewski, John & Schegner, Peter, 2022. "Investigating peer-to-peer power transactions for reducing EV induced network congestion," Energy, Elsevier, vol. 254(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Plat, Richard, 2009. "Stochastic portfolio specific mortality and the quantification of mortality basis risk," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 123-132, August.
    2. Asadzadeh, S.M. & Azadeh, A., 2014. "An integrated systemic model for optimization of condition-based maintenance with human error," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 117-131.
    3. Kondylis, Athanassios & Whittaker, Joe, 2008. "Spectral preconditioning of Krylov spaces: Combining PLS and PC regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2588-2603, January.
    4. Rajkumar Bhimgonda Patil & Basavraj S Kothavale & Laxman Yadu Waghmode, 2019. "Selection of time-to-failure model for computerized numerical control turning center based on the assessment of trends in maintenance data," Journal of Risk and Reliability, , vol. 233(2), pages 105-117, April.
    5. Kim, Junyung & Shah, Asad Ullah Amin & Kang, Hyun Gook, 2020. "Dynamic risk assessment with bayesian network and clustering analysis," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    6. Ouyang, Yaofu & Li, Peng, 2018. "On the nexus of financial development, economic growth, and energy consumption in China: New perspective from a GMM panel VAR approach," Energy Economics, Elsevier, vol. 71(C), pages 238-252.
    7. Paschalis Arvanitidis & Athina Economou & Christos Kollias, 2016. "Terrorism’s effects on social capital in European countries," Public Choice, Springer, vol. 169(3), pages 231-250, December.
    8. Rizvi, Syed Kumail Abbas & Rahat, Birjees & Naqvi, Bushra & Umar, Muhammad, 2024. "Revolutionizing finance: The synergy of fintech, digital adoption, and innovation," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    9. Teerachai Amnuaylojaroen & Pavinee Chanvichit, 2024. "Historical Analysis of the Effects of Drought on Rice and Maize Yields in Southeast Asia," Resources, MDPI, vol. 13(3), pages 1-18, March.
    10. Weili Duan & Bin He & Daniel Nover & Guishan Yang & Wen Chen & Huifang Meng & Shan Zou & Chuanming Liu, 2016. "Water Quality Assessment and Pollution Source Identification of the Eastern Poyang Lake Basin Using Multivariate Statistical Methods," Sustainability, MDPI, vol. 8(2), pages 1-15, January.
    11. Adele Ravagnani & Fabrizio Lillo & Paola Deriu & Piero Mazzarisi & Francesca Medda & Antonio Russo, 2024. "Dimensionality reduction techniques to support insider trading detection," Papers 2403.00707, arXiv.org, revised May 2024.
    12. Cling, Jean-Pierre & Delecourt, Clément, 2022. "Interlinkages between the Sustainable Development Goals," World Development Perspectives, Elsevier, vol. 25(C).
    13. Hino, Hideitsu & Wakayama, Keigo & Murata, Noboru, 2013. "Entropy-based sliced inverse regression," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 105-114.
    14. Angelucci, Federica & Conforti, Piero, 2010. "Risk management and finance along value chains of Small Island Developing States. Evidence from the Caribbean and the Pacific," Food Policy, Elsevier, vol. 35(6), pages 565-575, December.
    15. Poskitt, D.S. & Sengarapillai, Arivalzahan, 2013. "Description length and dimensionality reduction in functional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 98-113.
    16. Taner Akan & Tim Solle, 2022. "Do macroeconomic and financial governance matter? Evidence from Germany, 1950–2019," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 17(4), pages 993-1045, October.
    17. Rodrigo Andrade & Somayeh Moazeni & Jose Emmanuel Ramirez‐Marquez, 2020. "A systems perspective on contact centers and customer service reliability modeling," Systems Engineering, John Wiley & Sons, vol. 23(2), pages 221-236, March.
    18. Paolo Rizzi & Paola Graziano & Antonio Dallara, 2018. "A capacity approach to territorial resilience: the case of European regions," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 60(2), pages 285-328, March.
    19. Pérez, Claudia & Claveria, Oscar, 2020. "Natural resources and human development: Evidence from mineral-dependent African countries using exploratory graphical analysis," Resources Policy, Elsevier, vol. 65(C).
    20. Zeynep Ozkok, 2015. "Financial openness and financial development: an analysis using indices," International Review of Applied Economics, Taylor & Francis Journals, vol. 29(5), pages 620-649, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:115:y:2013:i:c:p:146-160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.