IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v215y2021ics0951832021003999.html
   My bibliography  Save this article

System risk quantification and decision making support using functional modeling and dynamic Bayesian network

Author

Listed:
  • KIM, Junyung
  • ZHAO, Xingang
  • SHAH, Asad Ullah Amin
  • KANG, Hyun Gook

Abstract

Risk-informed decision-making requires a probabilistic assessment of the likelihood of success of control action, given the system status. This paper presents a systematic state transition modeling approach integrating dynamic probabilistic risk assessment with a decision-making process using a dynamic Bayesian network (DBN) coupled with functional modeling. A functional model designed with multilevel flow modeling (MFM) technique was used to build a system state structure inferred by energy, mass, and information flow so that one can verify the developed model with respect to system functionality. The MFM model represents the causal relationship among the nodes, which captures the structure of process parameters and control units. Each node may have multiple possible states, and the DBN structured by the MFM model represents the time-domain transitions among the defined states. The MFM-DBN integrated state transition modeling is a white-box approach that allows one to draw the system's risk profile by updating the system states and supports the decisions probabilistically with physical inference. An example of a simple heating system has been used to illustrate this process, including decision-making support based on quantitative risk profile. For demonstrating its applicability to a complex system operational decision making, a case study of station blackout accident scenario leading to the seal loss of coolant accident in a nuclear power plant is presented. The proposed approach effectively provided the risk profile along time for each option so that the operators can make the best decision, which minimizes the plant risk.

Suggested Citation

  • KIM, Junyung & ZHAO, Xingang & SHAH, Asad Ullah Amin & KANG, Hyun Gook, 2021. "System risk quantification and decision making support using functional modeling and dynamic Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
  • Handle: RePEc:eee:reensy:v:215:y:2021:i:c:s0951832021003999
    DOI: 10.1016/j.ress.2021.107880
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021003999
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107880?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hanea, A.M. & Kurowicka, D. & Cooke, R.M. & Ababei, D.A., 2010. "Mining and visualising ordinal data with non-parametric continuous BBNs," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 668-687, March.
    2. Khakzad, Nima & Khan, Faisal & Amyotte, Paul, 2011. "Safety analysis in process facilities: Comparison of fault tree and Bayesian network approaches," Reliability Engineering and System Safety, Elsevier, vol. 96(8), pages 925-932.
    3. Wu, Xianguo & Liu, Huitao & Zhang, Limao & Skibniewski, Miroslaw J. & Deng, Qianli & Teng, Jiaying, 2015. "A dynamic Bayesian network based approach to safety decision support in tunnel construction," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 157-168.
    4. Bucci, Paolo & Kirschenbaum, Jason & Mangan, L. Anthony & Aldemir, Tunc & Smith, Curtis & Wood, Ted, 2008. "Construction of event-tree/fault-tree models from a Markov approach to dynamic system reliability," Reliability Engineering and System Safety, Elsevier, vol. 93(11), pages 1616-1627.
    5. Montani, S. & Portinale, L. & Bobbio, A. & Codetta-Raiteri, D., 2008. "Radyban: A tool for reliability analysis of dynamic fault trees through conversion into dynamic Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 93(7), pages 922-932.
    6. Katrina M Groth & Matthew R Denman & Michael C Darling & Thomas B Jones & George F Luger, 2020. "Building and using dynamic risk-informed diagnosis procedures for complex system accidents," Journal of Risk and Reliability, , vol. 234(1), pages 193-207, February.
    7. Hobæk Haff, Ingrid & Aas, Kjersti & Frigessi, Arnoldo & Lacal, Virginia, 2016. "Structure learning in Bayesian Networks using regular vines," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 186-208.
    8. Kim, Junyung & Shah, Asad Ullah Amin & Kang, Hyun Gook, 2020. "Dynamic risk assessment with bayesian network and clustering analysis," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    9. Khakzad, Nima, 2015. "Application of dynamic Bayesian network to risk analysis of domino effects in chemical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 263-272.
    10. Yang, Jun & Aldemir, Tunc, 2016. "An algorithm for the computationally efficient deductive implementation of the Markov/Cell-to-Cell-Mapping Technique for risk significant scenario identification," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 1-8.
    11. Oh, ChoHwan & Lee, Jeong Ik, 2020. "Real time nuclear power plant operating state cognitive algorithm development using dynamic Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    12. Yang, Jun & Zou, Bowen & Yang, Ming, 2019. "Bidirectional implementation of Markov/CCMT for dynamic reliability analysis with application to digital I&C systems," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 278-290.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Jiansong & Zhang, Linlin & Bai, Yiping & Reniers, Genserik, 2022. "A safety investment optimization model for power grid enterprises based on System Dynamics and Bayesian network theory," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    2. Xu, Jintao & Gui, Maolei & Ding, Rui & Dai, Tao & Zheng, Mengyan & Men, Xinhong & Meng, Fanpeng & Yu, Tao & Sui, Yang, 2023. "A new approach for dynamic reliability analysis of reactor protection system for HPR1000," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    3. Zhang, Hengqi & Geng, Hua & Zeng, Huarong & Jiang, Li, 2023. "Dynamic risk evaluation and control of electrical personal accidents," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    4. Hai, Nan & Gong, Daqing & Liu, Shifeng & Dai, Zixuan, 2022. "Dynamic coupling risk assessment model of utility tunnels based on multimethod fusion," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    5. Caetano, Henrique O. & N., Luiz Desuó & Fogliatto, Matheus S.S. & Maciel, Carlos D., 2024. "Resilience assessment of critical infrastructures using dynamic Bayesian networks and evidence propagation," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    6. Guo, Jian & Luo, Cheng & Ma, Kaijiang, 2023. "Risk coupling analysis of road transportation accidents of hazardous materials in complicated maritime environment," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    7. Wang, Jian & Gao, Shibin & Yu, Long & Ma, Chaoqun & Zhang, Dongkai & Kou, Lei, 2023. "A data-driven integrated framework for predictive probabilistic risk analytics of overhead contact lines based on dynamic Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    8. Lewis, Austin D. & Groth, Katrina M., 2023. "A comparison of DBN model performance in SIPPRA health monitoring based on different data stream discretization methods," Reliability Engineering and System Safety, Elsevier, vol. 236(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lewis, Austin D. & Groth, Katrina M., 2023. "A comparison of DBN model performance in SIPPRA health monitoring based on different data stream discretization methods," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    2. Mi, Jinhua & Li, Yan-Feng & Yang, Yuan-Jian & Peng, Weiwen & Huang, Hong-Zhong, 2016. "Reliability assessment of complex electromechanical systems under epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 1-15.
    3. Maidana, Renan G. & Parhizkar, Tarannom & Gomola, Alojz & Utne, Ingrid B. & Mosleh, Ali, 2023. "Supervised dynamic probabilistic risk assessment: Review and comparison of methods," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    4. Kim, Junyung & Shah, Asad Ullah Amin & Kang, Hyun Gook, 2020. "Dynamic risk assessment with bayesian network and clustering analysis," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    5. Li, Mei & Liu, Zixian & Li, Xiaopeng & Liu, Yiliu, 2019. "Dynamic risk assessment in healthcare based on Bayesian approach," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 327-334.
    6. Pierpaolo D’Urso & Vincenzina Vitale, 2021. "Modeling Local BES Indicators by Copula-Based Bayesian Networks," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 153(3), pages 823-847, February.
    7. Yu, Shui & Wang, Zhonglai & Zhang, Kewang, 2018. "Sequential time-dependent reliability analysis for the lower extremity exoskeleton under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 45-52.
    8. Guo, Qingjun & Amin, Shohel & Hao, Qianwen & Haas, Olivier, 2020. "Resilience assessment of safety system at subway construction sites applying analytic network process and extension cloud models," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    9. Zhou, Ying & Li, Chenshuang & Zhou, Cheng & Luo, Hanbin, 2018. "Using Bayesian network for safety risk analysis of diaphragm wall deflection based on field data," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 152-167.
    10. Yi Yang & John Dalsgaard Sørensen, 2020. "Probabilistic Availability Analysis for Marine Energy Transfer Subsystem Using Bayesian Network," Energies, MDPI, vol. 13(19), pages 1-27, October.
    11. Moradi, Ramin & Cofre-Martel, Sergio & Lopez Droguett, Enrique & Modarres, Mohammad & Groth, Katrina M., 2022. "Integration of deep learning and Bayesian networks for condition and operation risk monitoring of complex engineering systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    12. Martin Folch-Calvo & Francisco Brocal-Fernández & Cristina González-Gaya & Miguel A. Sebastián, 2020. "Analysis and Characterization of Risk Methodologies Applied to Industrial Parks," Sustainability, MDPI, vol. 12(18), pages 1-35, September.
    13. Khakzad, Nima, 2015. "Application of dynamic Bayesian network to risk analysis of domino effects in chemical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 263-272.
    14. Mei Liu & Boning Li & Hongjun Cui & Pin-Chao Liao & Yuecheng Huang, 2022. "Research Paradigm of Network Approaches in Construction Safety and Occupational Health," IJERPH, MDPI, vol. 19(19), pages 1-22, September.
    15. Zhou, Ying & Li, Chenshuang & Ding, Lieyun & Sekula, Przemyslaw & Love, Peter E.D. & Zhou, Cheng, 2019. "Combining association rules mining with complex networks to monitor coupled risks," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 194-208.
    16. Khakzad, Nima & Khan, Faisal & Amyotte, Paul, 2013. "Risk-based design of process systems using discrete-time Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 5-17.
    17. Cai, Baoping & Liu, Yonghong & Liu, Zengkai & Tian, Xiaojie & Dong, Xin & Yu, Shilin, 2012. "Using Bayesian networks in reliability evaluation for subsea blowout preventer control system," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 32-41.
    18. Nima Khakzad, 2018. "Which Fire to Extinguish First? A Risk‐Informed Approach to Emergency Response in Oil Terminals," Risk Analysis, John Wiley & Sons, vol. 38(7), pages 1444-1454, July.
    19. Khakzad, Nima & Reniers, Genserik, 2015. "Using graph theory to analyze the vulnerability of process plants in the context of cascading effects," Reliability Engineering and System Safety, Elsevier, vol. 143(C), pages 63-73.
    20. Wu, Xingguang & Huang, Huirong & Xie, Jianyu & Lu, Meixing & Wang, Shaobo & Li, Wang & Huang, Yixuan & Yu, Weichao & Sun, Xiaobo, 2023. "A novel dynamic risk assessment method for the petrochemical industry using bow-tie analysis and Bayesian network analysis method based on the methodological framework of ARAMIS project," Reliability Engineering and System Safety, Elsevier, vol. 237(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:215:y:2021:i:c:s0951832021003999. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.