IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v94y2009i9p1480-1490.html
   My bibliography  Save this article

Sampling inspection for the evaluation of time-dependent reliability of deteriorating systems under imperfect defect detection

Author

Listed:
  • Kuniewski, Sebastian P.
  • van der Weide, Johannes A.M.
  • van Noortwijk, Jan M.

Abstract

The paper presents a sampling-inspection strategy for the evaluation of time-dependent reliability of deteriorating systems, where the deterioration is assumed to initiate at random times and at random locations. After initiation, defects are weakening the system's resistance. The system becomes unacceptable when at least one defect reaches a critical depth. The defects are assumed to initiate at random times modeled as event times of a non-homogeneous Poisson process (NHPP) and to develop according to a non-decreasing time-dependent gamma process. The intensity rate of the NHPP is assumed to be a combination of a known time-dependent shape function and an unknown proportionality constant. When sampling inspection (i.e. inspection of a selected subregion of the system) results in a number of defect initiations, Bayes’ theorem can be used to update prior beliefs about the proportionality constant of the NHPP intensity rate to the posterior distribution. On the basis of a time- and space-dependent Poisson process for the defect initiation, an adaptive Bayesian model for sampling inspection is developed to determine the predictive probability distribution of the time to failure. A potential application is, for instance, the inspection of a large vessel or pipeline suffering pitting/localized corrosion in the oil industry. The possibility of imperfect defect detection is also incorporated in the model.

Suggested Citation

  • Kuniewski, Sebastian P. & van der Weide, Johannes A.M. & van Noortwijk, Jan M., 2009. "Sampling inspection for the evaluation of time-dependent reliability of deteriorating systems under imperfect defect detection," Reliability Engineering and System Safety, Elsevier, vol. 94(9), pages 1480-1490.
  • Handle: RePEc:eee:reensy:v:94:y:2009:i:9:p:1480-1490
    DOI: 10.1016/j.ress.2008.11.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832008002718
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2008.11.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicolai, Robin P. & Dekker, Rommert & van Noortwijk, Jan M., 2007. "A comparison of models for measurable deterioration: An application to coatings on steel structures," Reliability Engineering and System Safety, Elsevier, vol. 92(12), pages 1635-1650.
    2. Kallen, M.J. & van Noortwijk, J.M., 2005. "Optimal maintenance decisions under imperfect inspection," Reliability Engineering and System Safety, Elsevier, vol. 90(2), pages 177-185.
    3. van Noortwijk, J.M., 2009. "A survey of the application of gamma processes in maintenance," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 2-21.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Caballé, N.C. & Castro, I.T. & Pérez, C.J. & Lanza-Gutiérrez, J.M., 2015. "A condition-based maintenance of a dependent degradation-threshold-shock model in a system with multiple degradation processes," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 98-109.
    2. Bautista, Lucía & Castro, Inma T. & Landesa, Luis, 2022. "Condition-based maintenance for a system subject to multiple degradation processes with stochastic arrival intensity," European Journal of Operational Research, Elsevier, vol. 302(2), pages 560-574.
    3. Qin, H. & Zhou, W. & Zhang, S., 2015. "Bayesian inferences of generation and growth of corrosion defects on energy pipelines based on imperfect inspection data," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 334-342.
    4. Cha, Ji Hwan & Finkelstein, Maxim, 2018. "On information-based residual lifetime in survival models with delayed failures," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 209-216.
    5. Cha, Ji Hwan & Finkelstein, Maxim, 2019. "Stochastic modeling for systems with delayed failures," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 118-124.
    6. Kong, Dejing & Qin, Chengwei & He, Yong & Cui, Lirong, 2017. "Sensor-based calibrations to improve reliability of systems subject to multiple dependent competing failure processes," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 101-113.
    7. David Randell & Michael Goldstein & Philip Jonathan, 2014. "Bayes linear variance structure learning for inspection of large scale physical systems," Journal of Risk and Reliability, , vol. 228(1), pages 3-18, February.
    8. Song, Sanling & Coit, David W. & Feng, Qianmei, 2014. "Reliability for systems of degrading components with distinct component shock sets," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 115-124.
    9. Si, Xiao-Sheng & Wang, Wenbin & Hu, Chang-Hua & Zhou, Dong-Hua, 2011. "Remaining useful life estimation - A review on the statistical data driven approaches," European Journal of Operational Research, Elsevier, vol. 213(1), pages 1-14, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M D Pandey & T Cheng & J A M van der Weide, 2011. "Finite-time maintenance cost analysis of engineering systems affected by stochastic degradation," Journal of Risk and Reliability, , vol. 225(2), pages 241-250, June.
    2. de Jonge, Bram & Teunter, Ruud & Tinga, Tiedo, 2017. "The influence of practical factors on the benefits of condition-based maintenance over time-based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 21-30.
    3. Cárdenas-Gallo, Iván & Sarmiento, Carlos A. & Morales, Gilberto A. & Bolivar, Manuel A. & Akhavan-Tabatabaei, Raha, 2017. "An ensemble classifier to predict track geometry degradation," Reliability Engineering and System Safety, Elsevier, vol. 161(C), pages 53-60.
    4. Cheng, Tianjin & Pandey, Mahesh D. & van der Weide, J.A.M., 2012. "The probability distribution of maintenance cost of a system affected by the gamma process of degradation: Finite time solution," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 65-76.
    5. Nicolai, R.P. & Frenk, J.B.G. & Dekker, R., 2007. "Modelling and Optimizing Imperfect Maintenance of Coatings on Steel Structures," ERIM Report Series Research in Management ERS-2007-043-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    6. Liu, Xingheng & Matias, José & Jäschke, Johannes & Vatn, Jørn, 2022. "Gibbs sampler for noisy Transformed Gamma process: Inference and remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    7. Hong, H.P. & Zhou, W. & Zhang, S. & Ye, W., 2014. "Optimal condition-based maintenance decisions for systems with dependent stochastic degradation of components," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 276-288.
    8. Guo, Chiming & Wang, Wenbin & Guo, Bo & Si, Xiaosheng, 2013. "A maintenance optimization model for mission-oriented systems based on Wiener degradation," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 183-194.
    9. Esposito, Nicola & Mele, Agostino & Castanier, Bruno & GIORGIO, Massimiliano, 2023. "A hybrid maintenance policy for a deteriorating unit in the presence of three forms of variability," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    10. C Meier-Hirmer & G Riboulet & F Sourget & M Roussignol, 2009. "Maintenance optimization for a system with a gamma deterioration process and intervention delay: Application to track maintenance," Journal of Risk and Reliability, , vol. 223(3), pages 189-198, September.
    11. Hazra, Indranil & Pandey, Mahesh D. & Manzana, Noldainerick, 2020. "Approximate Bayesian computation (ABC) method for estimating parameters of the gamma process using noisy data," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    12. Ponchet, Amélie & Fouladirad, Mitra & Grall, Antoine, 2010. "Assessment of a maintenance model for a multi-deteriorating mode system," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1244-1254.
    13. Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.
    14. Mosayebi Omshi, E. & Grall, A. & Shemehsavar, S., 2020. "A dynamic auto-adaptive predictive maintenance policy for degradation with unknown parameters," European Journal of Operational Research, Elsevier, vol. 282(1), pages 81-92.
    15. Dann, Markus R. & Maes, Marc A., 2018. "Stochastic corrosion growth modeling for pipelines using mass inspection data," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 245-254.
    16. Lu, Biao & Chen, Zhen & Zhao, Xufeng, 2021. "Data-driven dynamic predictive maintenance for a manufacturing system with quality deterioration and online sensors," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    17. Alaa H. Elwany & Nagi Z. Gebraeel & Lisa M. Maillart, 2011. "Structured Replacement Policies for Components with Complex Degradation Processes and Dedicated Sensors," Operations Research, INFORMS, vol. 59(3), pages 684-695, June.
    18. Abdenour Soualhi & Mourad Lamraoui & Bilal Elyousfi & Hubert Razik, 2022. "PHM SURVEY: Implementation of Prognostic Methods for Monitoring Industrial Systems," Energies, MDPI, vol. 15(19), pages 1-24, September.
    19. Boutros El Hajj & Bruno Castanier & Franck Schoefs & Thomas Yeung, 2016. "A risk-oriented degradation model for maintenance of reinforced concrete structure subjected to cracking," Journal of Risk and Reliability, , vol. 230(5), pages 521-530, October.
    20. Thomas Michael Welte & Iver Bakken Sperstad & Espen Høegh Sørum & Magne Lorentzen Kolstad, 2017. "Integration of Degradation Processes in a Strategic Offshore Wind Farm O&M Simulation Model," Energies, MDPI, vol. 10(7), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:94:y:2009:i:9:p:1480-1490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.