IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v180y2018icp245-254.html
   My bibliography  Save this article

Stochastic corrosion growth modeling for pipelines using mass inspection data

Author

Listed:
  • Dann, Markus R.
  • Maes, Marc A.

Abstract

Integrity assessment of corroded pipelines requires estimates of the current and future sizes of the features. Corrosion growth is often inferred from inspection results by analyzing the feature-specific growth path. The objective is to introduce a new probabilistic model to determine the current and future metal loss for corroded pipelines based on mass inspection data. The model treats the corrosion features from a population perspective without tracking the local growth of each feature. Measurement errors such as detectability, false calls, and sizing errors are considered to infer the population of actual features from the inspection data. Two separate stochastic gamma processes are applied to model corrosion growth of the already existing and new features between inspections. The proposed population-based model does not require feature matching compared to a feature-specific corrosion growth analysis. The developed model is ideal for pipelines with high feature densities where feature matching can be time intensive and prone to errors. The problem size in the proposed model is independent of the number of observed features and, consequently, efficient data processing is guaranteed. The obtained analysis results are often sufficient to manage the integrity of pipelines without the increased effort of a feature-specific corrosion growth analysis.

Suggested Citation

  • Dann, Markus R. & Maes, Marc A., 2018. "Stochastic corrosion growth modeling for pipelines using mass inspection data," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 245-254.
  • Handle: RePEc:eee:reensy:v:180:y:2018:i:c:p:245-254
    DOI: 10.1016/j.ress.2018.07.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832017309870
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2018.07.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David M. Blei & Alp Kucukelbir & Jon D. McAuliffe, 2017. "Variational Inference: A Review for Statisticians," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 859-877, April.
    2. Qin, H. & Zhou, W. & Zhang, S., 2015. "Bayesian inferences of generation and growth of corrosion defects on energy pipelines based on imperfect inspection data," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 334-342.
    3. Kallen, M.J. & van Noortwijk, J.M., 2005. "Optimal maintenance decisions under imperfect inspection," Reliability Engineering and System Safety, Elsevier, vol. 90(2), pages 177-185.
    4. Gomes, Wellison J.S. & Beck, André T. & Haukaas, Terje, 2013. "Optimal inspection planning for onshore pipelines subject to external corrosion," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 18-27.
    5. van Noortwijk, J.M., 2009. "A survey of the application of gamma processes in maintenance," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 2-21.
    6. Zhang, Shenwei & Zhou, Wenxing, 2014. "Bayesian dynamic linear model for growth of corrosion defects on energy pipelines," Reliability Engineering and System Safety, Elsevier, vol. 128(C), pages 24-31.
    7. Dann, Markus R. & Dann, Christoph, 2017. "Automated matching of pipeline corrosion features from in-line inspection data," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 40-50.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chengtao Wang & Wei Li & Gaifang Xin & Yuqiao Wang & Shaoyi Xu, 2019. "Prediction Model of Corrosion Current Density Induced by Stray Current Based on QPSO-Driven Neural Network," Complexity, Hindawi, vol. 2019, pages 1-15, October.
    2. Liu, Aihua & Chen, Ke & Huang, Xiaofei & Li, Didi & Zhang, Xiaochun, 2021. "Dynamic risk assessment model of buried gas pipelines based on system dynamics," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    3. Zhang, Tieyao & Shuai, Jian & Shuai, Yi & Hua, Luoyi & Xu, Kui & Xie, Dong & Mei, Yuan, 2023. "Efficient prediction method of triple failure pressure for corroded pipelines under complex loads based on a backpropagation neural network," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    4. Woloszyk, Krzysztof & Garbatov, Yordan, 2024. "A probabilistic-driven framework for enhanced corrosion estimation of ship structural components," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    5. Yu, Weichao & Huang, Weihe & Wen, Kai & Zhang, Jie & Liu, Hongfei & Wang, Kun & Gong, Jing & Qu, Chunxu, 2021. "Subset simulation-based reliability analysis of the corroding natural gas pipeline," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    6. Heidary, Roohollah & Groth, Katrina M., 2021. "A hybrid population-based degradation model for pipeline pitting corrosion," Reliability Engineering and System Safety, Elsevier, vol. 214(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hazra, Indranil & Pandey, Mahesh D. & Manzana, Noldainerick, 2020. "Approximate Bayesian computation (ABC) method for estimating parameters of the gamma process using noisy data," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    2. Dann, Markus R. & Dann, Christoph, 2017. "Automated matching of pipeline corrosion features from in-line inspection data," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 40-50.
    3. Heidary, Roohollah & Groth, Katrina M., 2021. "A hybrid population-based degradation model for pipeline pitting corrosion," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    4. Liu, Xingheng & Matias, José & Jäschke, Johannes & Vatn, Jørn, 2022. "Gibbs sampler for noisy Transformed Gamma process: Inference and remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    5. M D Pandey & T Cheng & J A M van der Weide, 2011. "Finite-time maintenance cost analysis of engineering systems affected by stochastic degradation," Journal of Risk and Reliability, , vol. 225(2), pages 241-250, June.
    6. de Jonge, Bram & Teunter, Ruud & Tinga, Tiedo, 2017. "The influence of practical factors on the benefits of condition-based maintenance over time-based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 21-30.
    7. Hong, H.P. & Zhou, W. & Zhang, S. & Ye, W., 2014. "Optimal condition-based maintenance decisions for systems with dependent stochastic degradation of components," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 276-288.
    8. Guo, Chiming & Wang, Wenbin & Guo, Bo & Si, Xiaosheng, 2013. "A maintenance optimization model for mission-oriented systems based on Wiener degradation," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 183-194.
    9. Esposito, Nicola & Mele, Agostino & Castanier, Bruno & GIORGIO, Massimiliano, 2023. "A hybrid maintenance policy for a deteriorating unit in the presence of three forms of variability," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    10. Ponchet, Amélie & Fouladirad, Mitra & Grall, Antoine, 2010. "Assessment of a maintenance model for a multi-deteriorating mode system," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1244-1254.
    11. Cárdenas-Gallo, Iván & Sarmiento, Carlos A. & Morales, Gilberto A. & Bolivar, Manuel A. & Akhavan-Tabatabaei, Raha, 2017. "An ensemble classifier to predict track geometry degradation," Reliability Engineering and System Safety, Elsevier, vol. 161(C), pages 53-60.
    12. Mosayebi Omshi, E. & Grall, A. & Shemehsavar, S., 2020. "A dynamic auto-adaptive predictive maintenance policy for degradation with unknown parameters," European Journal of Operational Research, Elsevier, vol. 282(1), pages 81-92.
    13. Lu, Biao & Chen, Zhen & Zhao, Xufeng, 2021. "Data-driven dynamic predictive maintenance for a manufacturing system with quality deterioration and online sensors," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    14. Abdenour Soualhi & Mourad Lamraoui & Bilal Elyousfi & Hubert Razik, 2022. "PHM SURVEY: Implementation of Prognostic Methods for Monitoring Industrial Systems," Energies, MDPI, vol. 15(19), pages 1-24, September.
    15. Wang, Changxi & Elsayed, Elsayed A., 2020. "Stochastic modeling of corrosion growth," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    16. Lee, Juseong & Mitici, Mihaela, 2020. "An integrated assessment of safety and efficiency of aircraft maintenance strategies using agent-based modelling and stochastic Petri nets," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    17. Kuniewski, Sebastian P. & van der Weide, Johannes A.M. & van Noortwijk, Jan M., 2009. "Sampling inspection for the evaluation of time-dependent reliability of deteriorating systems under imperfect defect detection," Reliability Engineering and System Safety, Elsevier, vol. 94(9), pages 1480-1490.
    18. Sun, Xuxue & Mraied, Hesham & Cai, Wenjun & Zhang, Qiong & Liang, Guoyuan & Li, Mingyang, 2018. "Bayesian latent degradation performance modeling and quantification of corroding aluminum alloys," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 84-96.
    19. Cheng, Tianjin & Pandey, Mahesh D. & van der Weide, J.A.M., 2012. "The probability distribution of maintenance cost of a system affected by the gamma process of degradation: Finite time solution," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 65-76.
    20. Fauriat, William & Zio, Enrico, 2020. "Optimization of an aperiodic sequential inspection and condition-based maintenance policy driven by value of information," Reliability Engineering and System Safety, Elsevier, vol. 204(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:180:y:2018:i:c:p:245-254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.