IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v230y2016i5p521-530.html
   My bibliography  Save this article

A risk-oriented degradation model for maintenance of reinforced concrete structure subjected to cracking

Author

Listed:
  • Boutros El Hajj
  • Bruno Castanier
  • Franck Schoefs
  • Thomas Yeung

Abstract

This article is within the context of decision models aimed for maintenance of structures and infrastructures in civil engineering. The contribution relies on the construction of a degradation model oriented toward risk analysis. The proposed model can be defined as a meta-model in the sense that it is based on observations while incorporating key features from the degradation process necessary for the maintenance decision. We propose to stimulate the construction of the degradation model based on the crack propagation of a submerged reinforced concrete structure subject to chloride-induced corrosion. Furthermore, a set of numerical illustrations is performed to demonstrate the advantages and applicability of the proposed approach in risk management and maintenance contexts.

Suggested Citation

  • Boutros El Hajj & Bruno Castanier & Franck Schoefs & Thomas Yeung, 2016. "A risk-oriented degradation model for maintenance of reinforced concrete structure subjected to cracking," Journal of Risk and Reliability, , vol. 230(5), pages 521-530, October.
  • Handle: RePEc:sae:risrel:v:230:y:2016:i:5:p:521-530
    DOI: 10.1177/1748006X16655006
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X16655006
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X16655006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Si, Xiao-Sheng & Wang, Wenbin & Hu, Chang-Hua & Zhou, Dong-Hua, 2011. "Remaining useful life estimation - A review on the statistical data driven approaches," European Journal of Operational Research, Elsevier, vol. 213(1), pages 1-14, August.
    2. Nicolai, Robin P. & Dekker, Rommert & van Noortwijk, Jan M., 2007. "A comparison of models for measurable deterioration: An application to coatings on steel structures," Reliability Engineering and System Safety, Elsevier, vol. 92(12), pages 1635-1650.
    3. van Noortwijk, J.M., 2009. "A survey of the application of gamma processes in maintenance," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 2-21.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.
    2. Nicolai, R.P. & Frenk, J.B.G. & Dekker, R., 2007. "Modelling and Optimizing Imperfect Maintenance of Coatings on Steel Structures," ERIM Report Series Research in Management ERS-2007-043-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    3. M D Pandey & T Cheng & J A M van der Weide, 2011. "Finite-time maintenance cost analysis of engineering systems affected by stochastic degradation," Journal of Risk and Reliability, , vol. 225(2), pages 241-250, June.
    4. de Jonge, Bram & Teunter, Ruud & Tinga, Tiedo, 2017. "The influence of practical factors on the benefits of condition-based maintenance over time-based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 21-30.
    5. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    6. Hai-Kun Wang & Yan-Feng Li & Yu Liu & Yuan-Jian Yang & Hong-Zhong Huang, 2015. "Remaining useful life estimation under degradation and shock damage," Journal of Risk and Reliability, , vol. 229(3), pages 200-208, June.
    7. Guo, Chiming & Wang, Wenbin & Guo, Bo & Si, Xiaosheng, 2013. "A maintenance optimization model for mission-oriented systems based on Wiener degradation," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 183-194.
    8. C Meier-Hirmer & G Riboulet & F Sourget & M Roussignol, 2009. "Maintenance optimization for a system with a gamma deterioration process and intervention delay: Application to track maintenance," Journal of Risk and Reliability, , vol. 223(3), pages 189-198, September.
    9. Ling, M.H. & Ng, H.K.T. & Tsui, K.L., 2019. "Bayesian and likelihood inferences on remaining useful life in two-phase degradation models under gamma process," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 77-85.
    10. Wang, Xiaolin & Balakrishnan, Narayanaswamy & Guo, Bo, 2014. "Residual life estimation based on a generalized Wiener degradation process," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 13-23.
    11. Cárdenas-Gallo, Iván & Sarmiento, Carlos A. & Morales, Gilberto A. & Bolivar, Manuel A. & Akhavan-Tabatabaei, Raha, 2017. "An ensemble classifier to predict track geometry degradation," Reliability Engineering and System Safety, Elsevier, vol. 161(C), pages 53-60.
    12. Song, Kai & Cui, Lirong, 2022. "A common random effect induced bivariate gamma degradation process with application to remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    13. Abdenour Soualhi & Mourad Lamraoui & Bilal Elyousfi & Hubert Razik, 2022. "PHM SURVEY: Implementation of Prognostic Methods for Monitoring Industrial Systems," Energies, MDPI, vol. 15(19), pages 1-24, September.
    14. Lorton, A. & Fouladirad, M. & Grall, A., 2013. "A methodology for probabilistic model-based prognosis," European Journal of Operational Research, Elsevier, vol. 225(3), pages 443-454.
    15. Huynh, K.T. & Grall, A. & Bérenguer, C., 2017. "Assessment of diagnostic and prognostic condition indices for efficient and robust maintenance decision-making of systems subject to stress corrosion cracking," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 237-254.
    16. Thomas Michael Welte & Iver Bakken Sperstad & Espen Høegh Sørum & Magne Lorentzen Kolstad, 2017. "Integration of Degradation Processes in a Strategic Offshore Wind Farm O&M Simulation Model," Energies, MDPI, vol. 10(7), pages 1-18, July.
    17. Guida, M. & Postiglione, F. & Pulcini, G., 2012. "A time-discrete extended gamma process for time-dependent degradation phenomena," Reliability Engineering and System Safety, Elsevier, vol. 105(C), pages 73-79.
    18. Lee, Juseong & Mitici, Mihaela, 2020. "An integrated assessment of safety and efficiency of aircraft maintenance strategies using agent-based modelling and stochastic Petri nets," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    19. Kuniewski, Sebastian P. & van der Weide, Johannes A.M. & van Noortwijk, Jan M., 2009. "Sampling inspection for the evaluation of time-dependent reliability of deteriorating systems under imperfect defect detection," Reliability Engineering and System Safety, Elsevier, vol. 94(9), pages 1480-1490.
    20. Deng, Yingjun & Bucchianico, Alessandro Di & Pechenizkiy, Mykola, 2020. "Controlling the accuracy and uncertainty trade-off in RUL prediction with a surrogate Wiener propagation model," Reliability Engineering and System Safety, Elsevier, vol. 196(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:230:y:2016:i:5:p:521-530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.