IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v254y2025ipas0951832024006252.html
   My bibliography  Save this article

Machine learning-based outlier detection for pipeline in-line inspection data

Author

Listed:
  • Hussain, Muhammad
  • Zhang, Tieling

Abstract

Pipeline companies are facing challenges in maintaining the integrity and reliability of their pipelines. They are working towards predictive maintenance using machine learning-based approaches to predicting anomalies. Training machine learning models requires sufficient data. Data quality is therefore becoming important because inaccurate data will lead to an inaccurate or wrong decision on pipeline condition assessment and the following management. This research paper intends to address the data quality issues of pipeline inspection data such as in-line inspection (ILI) data using machine learning models. Different machine learning models developed by random forest regression, linear regression, and nearest neighbors’ methods were tested to detect outliers in the ILI data. In this paper, the ILI data collected from an oil pipeline over a period of 22 years was applied to testing and analysis. To verify the outlier detection results of machine learning models, we used statistical analysis including Z-score method to check and find if there are any gaps in the analysis. It verifies that all these methods show almost the same or very similar results for the detection of the outliers. Hence, this study presents a robust method for the field applications in the pipeline industry.

Suggested Citation

  • Hussain, Muhammad & Zhang, Tieling, 2025. "Machine learning-based outlier detection for pipeline in-line inspection data," Reliability Engineering and System Safety, Elsevier, vol. 254(PA).
  • Handle: RePEc:eee:reensy:v:254:y:2025:i:pa:s0951832024006252
    DOI: 10.1016/j.ress.2024.110553
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024006252
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110553?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:254:y:2025:i:pa:s0951832024006252. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.