IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v251y2024ics0951832024004447.html
   My bibliography  Save this article

A real-time early warning classification method for natural gas leakage based on random forest

Author

Listed:
  • Tan, Qiong
  • Fu, Ming
  • Wang, Zhengxing
  • Yuan, Hongyong
  • Sun, Jinhua

Abstract

Serious natural gas leakage explosion accidents have brought seriously threatening to people's lives and properties. Efficient warning classifications is of great significance to make rapid response, thus reducing the losses caused by accidents. This paper describes a novel early warning classification method for natural gas leakage based on a multi-classification random forest (RF) model, which allows evaluating the level of early warning of gas accidents timely and accurately, assisting monitoring department and gas company in timely rapid decision and scientific disposal. Fully considering the laws of natural gas leakage and the change of comprehensive risks in underground spaces adjacent to natural gas pipeline, an early warning classification index system was established, and multiple warning factors features were extracted from recorded warning events of natural gas leakage. Then the early-warning level labels of the warning events was gained by K-mean clustering and experts scoring methods. The extracted warning features and the associated early-warning level labels were used to train and validate the proposed model. The effectiveness and feasibility of this model is further verified by comparing with other popular approaches. Furthermore, the verified model is loaded into real time module, which can achieve the real time warning classification. The research results demonstrated that the proposed method can timely and accurately classify the levels of the early warning events. The prediction accuracy of the natural gas leakage early warning classification model based on the RF algorithm is 88.02 %. For real time warning events, rapid decision can be made according to the characteristics of early-warning grades, and the emergency disposal can be guided more effectively based on the warning classification results.

Suggested Citation

  • Tan, Qiong & Fu, Ming & Wang, Zhengxing & Yuan, Hongyong & Sun, Jinhua, 2024. "A real-time early warning classification method for natural gas leakage based on random forest," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
  • Handle: RePEc:eee:reensy:v:251:y:2024:i:c:s0951832024004447
    DOI: 10.1016/j.ress.2024.110372
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024004447
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110372?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Lu & Lu, Pan & Ren, Yihao, 2021. "A deep learning approach for imbalanced crash data in predicting highway-rail grade crossings accidents," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. Zhou, Xiaoyi & Lu, Pan & Zheng, Zijian & Tolliver, Denver & Keramati, Amin, 2020. "Accident Prediction Accuracy Assessment for Highway-Rail Grade Crossings Using Random Forest Algorithm Compared with Decision Tree," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    3. Zhu, Weidong & Zhang, Tianjiao & Wu, Yong & Li, Shaorong & Li, Zhimin, 2022. "Research on optimization of an enterprise financial risk early warning method based on the DS-RF model," International Review of Financial Analysis, Elsevier, vol. 81(C).
    4. Ehsan Harirchian & Tom Lahmer & Shahla Rasulzade, 2020. "Earthquake Hazard Safety Assessment of Existing Buildings Using Optimized Multi-Layer Perceptron Neural Network," Energies, MDPI, vol. 13(8), pages 1-16, April.
    5. Liu, Aihua & Chen, Ke & Huang, Xiaofei & Li, Didi & Zhang, Xiaochun, 2021. "Dynamic risk assessment model of buried gas pipelines based on system dynamics," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    6. Li, Pengyu & Wang, Xiufang & Jiang, Chunlei & Bi, Hongbo & Liu, Yongzhi & Yan, Wendi & Zhang, Cong & Dong, Taiji & Sun, Yu, 2024. "Advanced transformer model for simultaneous leakage aperture recognition and localization in gas pipelines," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    7. Deng, Lei & Shi, Congling & Li, Haoran & Wan, Mei & Ren, Fei & Hou, Yanan & Tang, Fei, 2023. "Prediction of energy mass loss rate for biodiesel fire via machine learning and its physical modeling of flame radiation evolution," Energy, Elsevier, vol. 275(C).
    8. Chen, Xing-lin & Huang, Zong-hou & Ge, Fan-liang & Lin, Wei-dong & Yang, Fu-qiang, 2024. "A probabilistic analysis method for evaluating the safety & resilience of urban gas pipeline network," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    9. Munim, Ziaul Haque & Sørli, Michael André & Kim, Hyungju & Alon, Ilan, 2024. "Predicting maritime accident risk using Automated Machine Learning," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Prashant & Pasha, Junayed & Moses, Ren & Sobanjo, John & Ozguven, Eren E. & Dulebenets, Maxim A., 2022. "Development of exact and heuristic optimization methods for safety improvement projects at level crossings under conflicting objectives," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    2. Yan, Dongyang & Li, Keping & Zhu, Qiaozhen & Liu, Yanyan, 2023. "A railway accident prevention method based on reinforcement learning – Active preventive strategy by multi-modal data," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    3. Shi, Lingyuan & Yang, Xin & Chang, Ximing & Wu, Jianjun & Sun, Huijun, 2023. "An improved density peaks clustering algorithm based on k nearest neighbors and turning point for evaluating the severity of railway accidents," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    4. Amini, Mostafa & Bagheri, Ali & Delen, Dursun, 2022. "Discovering injury severity risk factors in automobile crashes: A hybrid explainable AI framework for decision support," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    5. Hou, Hui & Liu, Chao & Wei, Ruizeng & He, Huan & Wang, Lei & Li, Weibo, 2023. "Outage duration prediction under typhoon disaster with stacking ensemble learning," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    6. Quintanilha, Igor M. & Elias, Vitor R.M. & da Silva, Felipe B. & Fonini, Pedro A.M. & da Silva, Eduardo A.B. & Netto, Sergio L. & Apolinário, José A. & de Campos, Marcello L.R. & Martins, Wallace A., 2021. "A fault detector/classifier for closed-ring power generators using machine learning," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    7. Lin Wang & Yuping Xing, 2022. "Risk Assessment of a Coupled Natural Gas and Electricity Market Considering Dual Interactions: A System Dynamics Model," Energies, MDPI, vol. 16(1), pages 1-18, December.
    8. Hendalianpour, Ayad & Liu, Peide & Amirghodsi, Sirous & Hamzehlou, Mohammad, 2022. "Designing a System Dynamics model to simulate criteria affecting oil and gas development contracts," Resources Policy, Elsevier, vol. 78(C).
    9. Yuanying Chi & Mingjian Yan & Yuexia Pang & Hongbo Lei, 2022. "Financial Risk Assessment of Photovoltaic Industry Listed Companies Based on Text Mining," Sustainability, MDPI, vol. 14(19), pages 1-17, September.
    10. Penghui Zhao & Jianxiao Ma & Chubo Xu & Chuwei Zhao & Zifan Ni, 2022. "Research on the Safety of the Left Hard Shoulder in a Multi-Lane Highway Based on Safety Performance Function," Sustainability, MDPI, vol. 14(22), pages 1-19, November.
    11. Yin, Yuanbo & Yang, Hao & Duan, Pengfei & Li, Luling & Zio, Enrico & Liu, Cuiwei & Li, Yuxing, 2022. "Improved quantitative risk assessment of a natural gas pipeline considering high-consequence areas," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    12. Xiuguang Song & Rendong Pi & Yu Zhang & Jianqing Wu & Yuhuan Dong & Han Zhang & Xinyuan Zhu, 2021. "Determinants and Prediction of Injury Severities in Multi-Vehicle-Involved Crashes," IJERPH, MDPI, vol. 18(10), pages 1-16, May.
    13. Qiao, Yidan & Zhang, Xian & Wang, Hanyu & Chen, Dengkai, 2024. "Dynamic assessment method for human factor risk of manned deep submergence operation system based on SPAR-H and SD," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    14. Fan, Hanwen & Jia, Haiying & He, Xuzhuo & Lyu, Jing, 2024. "Navigating uncertainty: A dynamic Bayesian network-based risk assessment framework for maritime trade routes," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    15. Amaya-Gómez, Rafael & Schoefs, Franck & Sánchez-Silva, Mauricio & Muñoz, Felipe & Bastidas-Arteaga, Emilio, 2022. "Matching of corroded defects in onshore pipelines based on In-Line Inspections and Voronoi partitions," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    16. Ding, Shusheng & Cui, Tianxiang & Bellotti, Anthony Graham & Abedin, Mohammad Zoynul & Lucey, Brian, 2023. "The role of feature importance in predicting corporate financial distress in pre and post COVID periods: Evidence from China," International Review of Financial Analysis, Elsevier, vol. 90(C).
    17. Feng, Jian Rui & Yu, Guanghui & Zhao, Mengke & Zhang, Jiaqing & Lu, Shouxiang, 2022. "Dynamic risk assessment framework for industrial systems based on accidents chain theory: The case study of fire and explosion risk of UHV converter transformer," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    18. Liu, Jintao & Chen, Keyi & Duan, Huayu & Li, Chenling, 2024. "A knowledge graph-based hazard prediction approach for preventing railway operational accidents," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    19. Moradi, Ramin & Cofre-Martel, Sergio & Lopez Droguett, Enrique & Modarres, Mohammad & Groth, Katrina M., 2022. "Integration of deep learning and Bayesian networks for condition and operation risk monitoring of complex engineering systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    20. Chen, Yinuo & Xie, Shuyi & Tian, Zhigang, 2022. "Risk assessment of buried gas pipelines based on improved cloud-variable weight theory," Reliability Engineering and System Safety, Elsevier, vol. 221(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:251:y:2024:i:c:s0951832024004447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.