IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v211y2020ics0360544220317011.html
   My bibliography  Save this article

Dependency of technological lines in reliability analysis of heat production

Author

Listed:
  • Babiarz, Bożena
  • Blokus, Agnieszka

Abstract

Changes in external temperature throughout the year, related to the required thermal power in district heating cause large variability of thermal load during the year. The reliability analysis of heat production subsystem (SbHP) is performed under different operational conditions. Different thermal power supplies characterize particular operational states in which time-varying reliability structure is observed. Multi-state approach to the SbHP reliability analysis is proposed taking additionally into account the equal load sharing model of dependency among its technological lines. Variability of operating thermal load highly influences on the SbHP reliability characteristics. The SbHP mean conditional lifetimes in different operational states take values differing by 60%, 80% or even 90% of the value. Comparative analysis showed that the influence of dependencies among technological lines on the reliability of entire heat production subsystem is most significant in case of technological lines, linked in parallel. The expected lifetimes of SbHP with dependent lines in one of operational state compared to their values assuming independence among all lines are shorter by almost 40%. The presented approach allows for preventive and corrective maintenance in optimal time and for assessing the reliability and efficiency in various heat sources’ configurations providing the optimal use of energy resources.

Suggested Citation

  • Babiarz, Bożena & Blokus, Agnieszka, 2020. "Dependency of technological lines in reliability analysis of heat production," Energy, Elsevier, vol. 211(C).
  • Handle: RePEc:eee:energy:v:211:y:2020:i:c:s0360544220317011
    DOI: 10.1016/j.energy.2020.118593
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220317011
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118593?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Badami, Marco & Fonti, Antonio & Carpignano, Andrea & Grosso, Daniele, 2018. "Design of district heating networks through an integrated thermo-fluid dynamics and reliability modelling approach," Energy, Elsevier, vol. 144(C), pages 826-838.
    2. Fang, Tingting & Lahdelma, Risto, 2015. "Genetic optimization of multi-plant heat production in district heating networks," Applied Energy, Elsevier, vol. 159(C), pages 610-619.
    3. ValinÄ ius, Mindaugas & ŽutautaitÄ—, Inga & Dundulis, Gintautas & RimkeviÄ ius, Sigitas & Janulionis, Remigijus & Bakas, Rimantas, 2015. "Integrated assessment of failure probability of the district heating network," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 314-322.
    4. Rusin, Andrzej M., 2007. "Technical risk involved in long-term operation of steam turbines," Reliability Engineering and System Safety, Elsevier, vol. 92(9), pages 1242-1249.
    5. Fu, Xueqian & Guo, Qinglai & Sun, Hongbin & Zhang, Xiurong & Wang, Li, 2017. "Estimation of the failure probability of an integrated energy system based on the first order reliability method," Energy, Elsevier, vol. 134(C), pages 1068-1078.
    6. Iribarren, Diego & Martín-Gamboa, Mario & Navas-Anguita, Zaira & García-Gusano, Diego & Dufour, Javier, 2020. "Influence of climate change externalities on the sustainability-oriented prioritisation of prospective energy scenarios," Energy, Elsevier, vol. 196(C).
    7. Danielewicz, J. & Śniechowska, B. & Sayegh, M.A. & Fidorów, N. & Jouhara, H., 2016. "Three-dimensional numerical model of heat losses from district heating network pre-insulated pipes buried in the ground," Energy, Elsevier, vol. 108(C), pages 172-184.
    8. Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.
    9. Shan, Xiaofang & Wang, Peng & Lu, Weizhen, 2017. "The reliability and availability evaluation of repairable district heating networks under changeable external conditions," Applied Energy, Elsevier, vol. 203(C), pages 686-695.
    10. Bożena Babiarz, 2018. "Aspects of Heat Supply Security Management Using Elements of Decision Theory," Energies, MDPI, vol. 11(10), pages 1-14, October.
    11. Aven, Terje, 2016. "Risk assessment and risk management: Review of recent advances on their foundation," European Journal of Operational Research, Elsevier, vol. 253(1), pages 1-13.
    12. Sartor, K. & Dewalef, P., 2017. "Experimental validation of heat transport modelling in district heating networks," Energy, Elsevier, vol. 137(C), pages 961-968.
    13. Rimkevicius, Sigitas & Kaliatka, Algirdas & Valincius, Mindaugas & Dundulis, Gintautas & Janulionis, Remigijus & Grybenas, Albertas & Zutautaite, Inga, 2012. "Development of approach for reliability assessment of pipeline network systems," Applied Energy, Elsevier, vol. 94(C), pages 22-33.
    14. Mertz, Théophile & Serra, Sylvain & Henon, Aurélien & Reneaume, Jean-Michel, 2016. "A MINLP optimization of the configuration and the design of a district heating network: Academic study cases," Energy, Elsevier, vol. 117(P2), pages 450-464.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yang & Zhang, Shanhong & Chow, David & Kuckelkorn, Jens M., 2021. "Evaluation and optimization of district energy network performance: Present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    2. Badami, Marco & Fonti, Antonio & Carpignano, Andrea & Grosso, Daniele, 2018. "Design of district heating networks through an integrated thermo-fluid dynamics and reliability modelling approach," Energy, Elsevier, vol. 144(C), pages 826-838.
    3. Fu, Xueqian & Zhang, Xiurong & Qiao, Zheng & Li, Gengyin, 2019. "Estimating the failure probability in an integrated energy system considering correlations among failure patterns," Energy, Elsevier, vol. 178(C), pages 656-666.
    4. Wendel, Frank & Blesl, Markus & Brodecki, Lukasz & Hufendiek, Kai, 2022. "Expansion or decommission? – Transformation of existing district heating networks by reducing temperature levels in a cost-optimum network design," Applied Energy, Elsevier, vol. 310(C).
    5. Postnikov, Ivan & Stennikov, Valery & Mednikova, Ekaterina & Penkovskii, Andrey, 2018. "Methodology for optimization of component reliability of heat supply systems," Applied Energy, Elsevier, vol. 227(C), pages 365-374.
    6. Mortensen, Lasse Kappel & Shaker, Hamid Reza & Veje, Christian T., 2022. "Relative fault vulnerability prediction for energy distribution networks," Applied Energy, Elsevier, vol. 322(C).
    7. Wang, Hai & Wang, Haiying & Haijian, Zhou & Zhu, Tong, 2017. "Optimization modeling for smart operation of multi-source district heating with distributed variable-speed pumps," Energy, Elsevier, vol. 138(C), pages 1247-1262.
    8. Bożena Babiarz, 2018. "Aspects of Heat Supply Security Management Using Elements of Decision Theory," Energies, MDPI, vol. 11(10), pages 1-14, October.
    9. Ocłoń, Paweł & Nowak-Ocłoń, Marzena & Vallati, Andrea & Quintino, Alessandro & Corcione, Massimo, 2019. "Numerical determination of temperature distribution in heating network," Energy, Elsevier, vol. 183(C), pages 880-891.
    10. Manservigi, Lucrezia & Bahlawan, Hilal & Losi, Enzo & Morini, Mirko & Spina, Pier Ruggero & Venturini, Mauro, 2022. "A diagnostic approach for fault detection and identification in district heating networks," Energy, Elsevier, vol. 251(C).
    11. Chicherin, Stanislav, 2020. "Methodology for analyzing operation data for optimum district heating (DH) system design: Ten-year data of Omsk, Russia," Energy, Elsevier, vol. 211(C).
    12. Stanislav Chicherin & Vladislav Mašatin & Andres Siirde & Anna Volkova, 2020. "Method for Assessing Heat Loss in A District Heating Network with A Focus on the State of Insulation and Actual Demand for Useful Energy," Energies, MDPI, vol. 13(17), pages 1-15, September.
    13. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    14. Marco Pellegrini & Augusto Bianchini, 2018. "The Innovative Concept of Cold District Heating Networks: A Literature Review," Energies, MDPI, vol. 11(1), pages 1-16, January.
    15. Shan, Xiaofang & Wang, Peng & Lu, Weizhen, 2017. "The reliability and availability evaluation of repairable district heating networks under changeable external conditions," Applied Energy, Elsevier, vol. 203(C), pages 686-695.
    16. Su, Huai & Zhang, Jinjun & Zio, Enrico & Yang, Nan & Li, Xueyi & Zhang, Zongjie, 2018. "An integrated systemic method for supply reliability assessment of natural gas pipeline networks," Applied Energy, Elsevier, vol. 209(C), pages 489-501.
    17. Fester, Jakob & Østergaard, Peter Friis & Bentsen, Fredrik & Nielsen, Brian Kongsgaard, 2023. "A data-driven method for heat loss estimation from district heating service pipes using heat meter- and GIS data," Energy, Elsevier, vol. 277(C).
    18. Meibodi, Saleh S. & Rees, Simon & Loveridge, Fleur, 2024. "Modeling district heating pipelines using a hybrid dynamic thermal network approach," Energy, Elsevier, vol. 290(C).
    19. Su, Qingyu & Chen, Cong & Huang, Xin & Li, Jian, 2022. "Interval TrendRank method for grid node importance assessment considering new energy," Applied Energy, Elsevier, vol. 324(C).
    20. Fu, Xueqian & Li, Gengyin & Zhang, Xiurong & Qiao, Zheng, 2018. "Failure probability estimation of the gas supply using a data-driven model in an integrated energy system," Applied Energy, Elsevier, vol. 232(C), pages 704-714.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:211:y:2020:i:c:s0360544220317011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.