IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v247y2024ics0951832024002060.html
   My bibliography  Save this article

Feasibility evaluation of Copula theory for substation equipment with multiple nonlinear-related seismic response indexes

Author

Listed:
  • Wen, Jiayi
  • Li, Xiaoxuan
  • Xue, Jingwei

Abstract

Seismic vulnerability evaluations of substation equipment under multiple correlated failure modes are urgently needed. The Copula method, an efficient tool for considering the correlation between variables, holds significant potential application value. However, due to the evident nonlinear correlation between structural and functional responses of substation equipment, the effectiveness of the Copula method is adversely affected. Therefore, this study takes four seismic intensity levels, investigates the distribution and correlation characteristics of seismic responses of typical substation equipment at different levels, and demonstrates the feasibility of the Copula method. The results indicate that the nonlinear correlation features of equipment responses have a significant impact on the choice of Copula functions. The widely used Gaussian Copula exhibits evident limitations, while the Archimedean family Copula is more suitable for substation equipment assessment. Traditional methods that do not consider multiple failure modes or neglect correlation between different modes yield significantly lower seismic vulnerability compared to the Copula-based method that considers correlations. Additionally, compared to traditional non-correlation assessment methods, the Copula method demonstrates better stability, with assessment results less affected by variations in the selection of sample ground motions. Therefore, the Copula method is suitable for assessing the seismic vulnerability of substation equipment and merits widespread application.

Suggested Citation

  • Wen, Jiayi & Li, Xiaoxuan & Xue, Jingwei, 2024. "Feasibility evaluation of Copula theory for substation equipment with multiple nonlinear-related seismic response indexes," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
  • Handle: RePEc:eee:reensy:v:247:y:2024:i:c:s0951832024002060
    DOI: 10.1016/j.ress.2024.110132
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024002060
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110132?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zheng, Yide & Zhang, Yi, 2023. "Reliability analysis for system with dependent components based on survival signature and copula theory," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
    2. Othman, Abdullah & El-Saoud, Waleed A. & Habeebullah, Turki & Shaaban, Fathy & Abotalib, Abotalib Z., 2023. "Risk assessment of flash flood and soil erosion impacts on electrical infrastructures in overcrowded mountainous urban areas under climate change," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    3. Ferrario, E. & Poulos, A. & Castro, S. & de la Llera, J.C. & Lorca, A., 2022. "Predictive capacity of topological measures in evaluating seismic risk and resilience of electric power networks," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    4. Zheng, Xiao-Wei & Li, Hong-Nan & Gardoni, Paolo, 2023. "Hybrid Bayesian-Copula-based risk assessment for tall buildings subject to wind loads considering various uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    5. Liu, Xiaohang & Zheng, Shansuo & Wu, Xinxia & Chen, Dianxin & He, Jinchuan, 2021. "Research on a seismic connectivity reliability model of power systems based on the quasi-Monte Carlo method," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    6. Å nipas, Mindaugas & Radziukynas, Virginijus & ValakeviÄ ius, Eimutis, 2017. "Modeling reliability of power systems substations by using stochastic automata networks," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 13-22.
    7. Zhang, Chunfang & Wang, Liang & Bai, Xuchao & Huang, Jianan, 2022. "Bayesian reliability analysis for copula based step-stress partially accelerated dependent competing risks model," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    8. Sun, Xiaojun & Feng, Ding & Zhang, Qiang & Lin, Sheng, 2024. "Optimal siting of substations of traction power supply systems considering seismic risk," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    9. Xiao, Yuanhao & Zhao, Xudong & Wu, Yipeng & Chen, Zhilong & Gong, Huadong & Zhu, Lihong & Liu, Ying, 2022. "Seismic resilience assessment of urban interdependent lifeline networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    10. Liu, Wenli & Shao, Yixiao & Li, Chen & Li, Chengqian & Jiang, Zehao, 2023. "Development of a non-Gaussian copula Bayesian network for safety assessment of metro tunnel maintenance," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
    11. Oboudi, Mohammad Hossein & Mohammadi, Mohammad, 2024. "Two-Stage Seismic Resilience Enhancement of Electrical Distribution Systems," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    12. Du, Ao & Wang, Xiaowei & Xie, Yazhou & Dong, You, 2023. "Regional seismic risk and resilience assessment: Methodological development, applicability, and future research needs – An earthquake engineering perspective," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    13. Jiawei Cui & Ailan Che & Sheng Li & Yongfeng Cheng, 2021. "Evaluation method on seismic risk of substation in strong earthquake area," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-22, December.
    14. Li, Yaohan & Dong, You & Guo, Hongyuan, 2023. "Copula-based multivariate renewal model for life-cycle analysis of civil infrastructure considering multiple dependent deterioration processes," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fadel Miguel, Leandro F. & Beck, André T., 2024. "Optimal path shape of friction-based Track-Nonlinear Energy Sinks to minimize lifecycle costs of buildings subjected to ground accelerations," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    2. Huang, Xiubing & Wang, Naiyu, 2024. "An adaptive nested dynamic downscaling strategy of wind-field for real-time risk forecast of power transmission systems during tropical cyclones," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    3. Hao, Yucheng & Jia, Limin & Zio, Enrico & Wang, Yanhui & Small, Michael & Li, Man, 2023. "Improving resilience of high-speed train by optimizing repair strategies," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    4. Jia, Rui & Du, Kun & Song, Zhigang & Xu, Wei & Zheng, Feifei, 2024. "Scenario reduction-based simulation method for efficient serviceability assessment of earthquake-damaged water distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    5. HIMOTO, Keisuke & SAWADA, Yuto & OHMIYA, Yoshifumi, 2024. "Quantifying fire resilience of buildings considering the impact of water damage accompanied by fire extinguishment," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    6. Wang, Yifei & Xie, Mingjiang & Su, Chun, 2024. "Multi-objective maintenance strategy for corroded pipelines considering the correlation of different failure modes," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    7. Mendoza-Lugo, Miguel Angel & Morales-Nápoles, Oswaldo, 2024. "Mapping hazardous locations on a road network due to extreme gross vehicle weights," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    8. Pan, Yan & Liang, Bin & Yang, Lei & Liu, Houde & Wu, Tonghai & Wang, Shuo, 2024. "Spatial-temporal modeling of oil condition monitoring: A review," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    9. Pei, Shunshun & Zhai, Changhai & Hu, Jie, 2024. "Surrogate model-assisted seismic resilience assessment of the interdependent transportation and healthcare system considering a two-stage recovery strategy," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    10. Wang, Hongping & Fang, Yi-Ping & Zio, Enrico, 2022. "Resilience-oriented optimal post-disruption reconfiguration for coupled traffic-power systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    11. Liu, Juncai & Tian, Li & Yang, Meng & Meng, Xiangrui, 2024. "Probabilistic framework for seismic resilience assessment of transmission tower-line systems subjected to mainshock-aftershock sequences," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    12. Li, Chao & Diao, Yucheng & Li, Hong-Nan & Pan, Haiyang & Ma, Ruisheng & Han, Qiang & Xing, Yihan, 2023. "Seismic performance assessment of a sea-crossing cable-stayed bridge system considering soil spatial variability," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    13. Anwar, Ghazanfar Ali & Zhang, Xiaoge, 2024. "Deep reinforcement learning for intelligent risk optimization of buildings under hazard," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    14. Chahrour, Nour & Bérenguer, Christophe & Tacnet, Jean-Marc, 2024. "Incorporating cascading effects analysis in the maintenance policy assessment of torrent check dams against torrential floods," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    15. Ariannik, Mohamadreza & Razi-Kazemi, Ali A. & Lehtonen, Matti, 2020. "An approach on lifetime estimation of distribution transformers based on degree of polymerization," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    16. Chengbin Wu & Bowen Zhang & Jiayao Liu & Wei Si, 2023. "Evolution Analysis of Asphalt Pavement Performance in Its Life Cycle: Case Study in Qinghai–Tibet Highway," Sustainability, MDPI, vol. 15(12), pages 1-17, June.
    17. Zhiyuan Zuo & Liang Wang & Yuhlong Lio, 2022. "Reliability Estimation for Dependent Left-Truncated and Right-Censored Competing Risks Data with Illustrations," Energies, MDPI, vol. 16(1), pages 1-25, December.
    18. Davies, Katherine & Dembińska, Anna, 2024. "On the residual lifetimes of dependent components upon system failure," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    19. Zeng, Chen-dong & Qiu, Zhi-cheng & Zhang, Fen-hua & Zhang, Xian-min, 2023. "Error modelling and motion reliability analysis of a multi-DOF redundant parallel mechanism with hybrid uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    20. Teng, Da & Feng, Yun-Wen & Lu, Cheng & Liu, Jia-Qi & Chen, Jun-Yu, 2024. "Vectorial generative adversarial surrogate modeling reliability evaluation framework for engineering structural systems," Reliability Engineering and System Safety, Elsevier, vol. 247(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:247:y:2024:i:c:s0951832024002060. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.