IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v311y2022i1d10.1007_s10479-019-03202-5.html
   My bibliography  Save this article

Reliability calculation method based on the Copula function for mechanical systems with dependent failure

Author

Listed:
  • Ying-Kui Gu

    (Jiangxi University of Science and Technology)

  • Chao-Jun Fan

    (Jiangxi University of Science and Technology)

  • Ling-Qiang Liang

    (Jiangxi University of Science and Technology)

  • Jun Zhang

    (Jiangxi University of Science and Technology)

Abstract

In order to accurately calculate the reliability of mechanical components and systems with multiple correlated failure modes and to reduce the computational complexity of these calculations, the Copula function is used to represent related structures among failure modes. Based on a correlation analysis of the failure modes of parts of a system, a life distribution model of components is constructed using the Copula function. The type of Copula model was initially selected using a binary frequency histogram of the life empirical distribution between the two components. The unknown parameters in the Copula model were estimated using the maximum likelihood estimation method and the most suitable Copula model was determined by calculating the square Euclidean distance. The reliability of series, parallel, and series–parallel systems was analyzed based on the Copula function, where life was used as a variable to measure the correlation between components. Thus, a reliability model of a system with life correlations was established. Reliability calculation of a particular diesel crank and connecting rod mechanism was taken as a practical example to illustrate the feasibility of the proposed method.

Suggested Citation

  • Ying-Kui Gu & Chao-Jun Fan & Ling-Qiang Liang & Jun Zhang, 2022. "Reliability calculation method based on the Copula function for mechanical systems with dependent failure," Annals of Operations Research, Springer, vol. 311(1), pages 99-116, April.
  • Handle: RePEc:spr:annopr:v:311:y:2022:i:1:d:10.1007_s10479-019-03202-5
    DOI: 10.1007/s10479-019-03202-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-019-03202-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-019-03202-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mi, Jinhua & Li, Yan-Feng & Yang, Yuan-Jian & Peng, Weiwen & Huang, Hong-Zhong, 2016. "Reliability assessment of complex electromechanical systems under epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 1-15.
    2. Mi, Jinhua & Li, Yan-Feng & Peng, Weiwen & Huang, Hong-Zhong, 2018. "Reliability analysis of complex multi-state system with common cause failure based on evidential networks," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 71-81.
    3. Zhang, Xiaoqiang & Gao, Huiying & Huang, Hong-Zhong & Li, Yan-Feng & Mi, Jinhua, 2018. "Dynamic reliability modeling for system analysis under complex load," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 345-351.
    4. Stern, R.E. & Song, J. & Work, D.B., 2017. "Accelerated Monte Carlo system reliability analysis through machine-learning-based surrogate models of network connectivity," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 1-9.
    5. N-C Xiao & H-Z Huang & Z Wang & Y Li & Y Liu, 2012. "Reliability analysis of series systems with multiple failure modes under epistemic and aleatory uncertainties," Journal of Risk and Reliability, , vol. 226(3), pages 295-304, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zeng, Zhiguo & Barros, Anne & Coit, David, 2023. "Dependent failure behavior modeling for risk and reliability: A systematic and critical literature review," Reliability Engineering and System Safety, Elsevier, vol. 239(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan-Jian Yang & Ya-Lan Xiong & Xin-Yin Zhang & Gui-Hua Wang & Bihai Zou, 2022. "Reliability analysis of continuous emission monitoring system with common cause failure based on fuzzy FMECA and Bayesian networks," Annals of Operations Research, Springer, vol. 311(1), pages 451-467, April.
    2. Yan-Feng Li & Hong-Zhong Huang & Jinhua Mi & Weiwen Peng & Xiaomeng Han, 2022. "Reliability analysis of multi-state systems with common cause failures based on Bayesian network and fuzzy probability," Annals of Operations Research, Springer, vol. 311(1), pages 195-209, April.
    3. Guang-Jun Jiang & Hong-Xia Chen & Le Gao & Hong-Hua Sun & Qing-Yang Li, 2022. "Reliability analysis on ammonium nitrate/fuel oil explosive vehicle pharmaceutical system based on dynamic fault tree and Bayesian network," Annals of Operations Research, Springer, vol. 311(1), pages 167-182, April.
    4. Jie Zhou & Hong-Zhong Huang & Yan-Feng Li & Junyu Guo, 2022. "A framework for fatigue reliability analysis of high-pressure turbine blades," Annals of Operations Research, Springer, vol. 311(1), pages 489-505, April.
    5. Jianxiong Gao & Zongwen An & Xuezong Bai, 2022. "A new representation method for probability distributions of multimodal and irregular data based on uniform mixture model," Annals of Operations Research, Springer, vol. 311(1), pages 81-97, April.
    6. Zheng Liu & Xin Liu & Hong-Zhong Huang & Pingyu Zhu & Zhongwei Liang, 2022. "A new inherent reliability modeling and analysis method based on imprecise Dirichlet model for machine tool spindle," Annals of Operations Research, Springer, vol. 311(1), pages 295-310, April.
    7. Zheng, Xiaohu & Yao, Wen & Xu, Yingchun & Wang, Ning, 2024. "Algorithms for Bayesian network modeling and reliability inference of complex multistate systems with common cause failure," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    8. Mi, Jinhua & Beer, Michael & Li, Yan-Feng & Broggi, Matteo & Cheng, Yuhua, 2020. "Reliability and importance analysis of uncertain system with common cause failures based on survival signature," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    9. Jinhua Mi & Yuhua Cheng & Yufei Song & Libing Bai & Kai Chen, 2022. "Application of dynamic evidential networks in reliability analysis of complex systems with epistemic uncertainty and multiple life distributions," Annals of Operations Research, Springer, vol. 311(1), pages 311-333, April.
    10. Yingchun Xu & Xiaohu Zheng & Wen Yao & Ning Wang & Xiaoqian Chen, 2021. "A sequential multi-prior integration and updating method for complex multi-level system based on Bayesian melding method," Journal of Risk and Reliability, , vol. 235(5), pages 863-876, October.
    11. Zeng, Ying & Huang, Tudi & Li, Yan-Feng & Huang, Hong-Zhong, 2023. "Reliability modeling for power converter in satellite considering periodic phased mission," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    12. Song, Yufei & Mi, Jinhua & Cheng, Yuhua & Bai, Libing & Chen, Kai, 2020. "A dependency bounds analysis method for reliability assessment of complex system with hybrid uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    13. Yong-Hua Li & Fu-Yu Zhao & Yue-Hua Gao & Peng-Peng Zhi, 2022. "Importance analysis of underframe connection system for the pantograph lower arm rod," Annals of Operations Research, Springer, vol. 311(1), pages 211-223, April.
    14. Qian, Hua-Ming & Li, Yan-Feng & Huang, Hong-Zhong, 2021. "Time-variant system reliability analysis method for a small failure probability problem," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    15. Zheng, Xiaohu & Yao, Wen & Xu, Yingchun & Chen, Xianqi, 2019. "Improved compression inference algorithm for reliability analysis of complex multistate satellite system based on multilevel Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 123-142.
    16. Mi, Jinhua & Lu, Ning & Li, Yan-Feng & Huang, Hong-Zhong & Bai, Libing, 2022. "An evidential network-based hierarchical method for system reliability analysis with common cause failures and mixed uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    17. Li, Xiang-Yu & Xiong, Xiaoyan & Guo, Junyu & Huang, Hong-Zhong & Li, Xiaopeng, 2022. "Reliability assessment of non-repairable multi-state phased mission systems with backup missions," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    18. Li, Xiang-Yu & Li, Yan-Feng & Huang, Hong-Zhong & Zio, Enrico, 2018. "Reliability assessment of phased-mission systems under random shocks," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 352-361.
    19. Zhang, Xiaoqiang & Gao, Huiying & Huang, Hong-Zhong & Li, Yan-Feng & Mi, Jinhua, 2018. "Dynamic reliability modeling for system analysis under complex load," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 345-351.
    20. Ning Wang & Zhuo Zhang & Jiao Zhao & Dawei Hu, 2022. "Recognition method of equipment state with the FLDA based Mahalanobis–Taguchi system," Annals of Operations Research, Springer, vol. 311(1), pages 417-435, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:311:y:2022:i:1:d:10.1007_s10479-019-03202-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.