IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v180y2023ics1366554523003198.html
   My bibliography  Save this article

A machine learning-based Bayesian model for predicting the duration of ship detention in PSC inspection

Author

Listed:
  • Yang, Zhisen
  • Wan, Chengpeng
  • Yu, Qing
  • Yin, Jingbo
  • Yang, Zaili

Abstract

Port state control (PSC) inspections are deemed as an effective way to detect substandard vessels and ensure maritime safety around the world. Despite great efforts on PSC in recent years, one challenge that still exists in today’s PSC inspection practice is that there lack relevant scheme or academic research focusing on the duration of vessel detention, which is of great importance to the inspection system. To assist port authorities in estimating detention duration and minimizing the existence of substandard vessels, this paper aims to develop a novel data-driven machine learning based model based on the inspection records collected within the jurisdiction of Paris MoU from January 2015 to March 2022. The model is trained via the incorporation of an Improved Tree Augmented Naïve (ITAN) learning approach and a maximum a posteriori probability (MAP) of Expectation Maximization (EM) approach for the first time within the context of PSC research, which could be used as a prediction tool to determine rational durations for detained vessels. Thorough analysis of the proposed model enables the identification of risk variables and deficiency types having significant effects leading to long duration of detention. Further, the research findings could reveal managerial suggestions and insights for port authorities to reduce the occurrence of substandard vessels via the inspection system, i.e., identify specific risk level of vessels and ensure a more-efficient vessel selection process; design specific instructions and rules to regulate risk variables and deficiencies with huge effect on a long duration of detention. This research will provide insightful reference for effectively improving vessel quality, inspection efficiency, and maritime safety.

Suggested Citation

  • Yang, Zhisen & Wan, Chengpeng & Yu, Qing & Yin, Jingbo & Yang, Zaili, 2023. "A machine learning-based Bayesian model for predicting the duration of ship detention in PSC inspection," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
  • Handle: RePEc:eee:transe:v:180:y:2023:i:c:s1366554523003198
    DOI: 10.1016/j.tre.2023.103331
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554523003198
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2023.103331?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiao, Yi & Wang, Grace & Ge, Ying-En & Xu, Qinyi & Li, Kevin X., 2021. "Game model for a new inspection regime of port state control under different reward and punishment conditions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    2. Wan, Chengpeng & Yan, Xinping & Zhang, Di & Yang, Zaili, 2019. "A novel policy making aid model for the development of LNG fuelled ships," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 29-44.
    3. Wang, Likun & Yang, Zaili, 2018. "Bayesian network modelling and analysis of accident severity in waterborne transportation: A case study in China," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 277-289.
    4. Vander Hoorn, Stephen & Knapp, Sabine, 2015. "A multi-layered risk exposure assessment approach for the shipping industry," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 21-33.
    5. Yang, Zaili & Yang, Zhisen & Smith, John & Robert, Bostock Adam Peter, 2021. "Risk analysis of bicycle accidents: A Bayesian approach," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    6. Lixian Fan & Lan Zheng & Meifeng Luo, 2022. "Effectiveness of port state control inspection using Bayesian network modelling," Maritime Policy & Management, Taylor & Francis Journals, vol. 49(2), pages 261-278, February.
    7. Dinis, D. & Teixeira, A.P. & Guedes Soares, C., 2020. "Probabilistic approach for characterising the static risk of ships using Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    8. Zhang, Liye & Meng, Qiang & Fang Fwa, Tien, 2019. "Big AIS data based spatial-temporal analyses of ship traffic in Singapore port waters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 287-304.
    9. Yan, Ran & Wang, Shuaian & Zhen, Lu, 2023. "An extended smart “predict, and optimize” (SPO) framework based on similar sets for ship inspection planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    10. Wang, Yuhong & Zhang, Fan & Yang, Zhisen & Yang, Zaili, 2021. "Incorporation of deficiency data into the analysis of the dependency and interdependency among the risk factors influencing port state control inspection," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    11. Karsten, Christian Vad & Brouer, Berit Dangaard & Desaulniers, Guy & Pisinger, David, 2017. "Time constrained liner shipping network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 152-162.
    12. Liu, Kezhong & Yu, Qing & Yang, Zhisen & Wan, Chengpeng & Yang, Zaili, 2022. "BN-based port state control inspection for Paris MoU: New risk factors and probability training using big data," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    13. Yan, Ran & Wang, Shuaian & Fagerholt, Kjetil, 2020. "A semi-“smart predict then optimize” (semi-SPO) method for efficient ship inspection," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 100-125.
    14. Wang, Shuaian & Yan, Ran & Qu, Xiaobo, 2019. "Development of a non-parametric classifier: Effective identification, algorithm, and applications in port state control for maritime transportation," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 129-157.
    15. Benz, Lukas & Münch, Christopher & Hartmann, Evi, 2021. "Development of a search and rescue framework for maritime freight shipping in the Arctic," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 54-69.
    16. Knapp, Sabine & Franses, Philip Hans, 2007. "Econometric analysis on the effect of port state control inspections on the probability of casualty: Can targeting of substandard ships for inspections be improved?," Marine Policy, Elsevier, vol. 31(4), pages 550-563, July.
    17. Yang, Zaili & Ng, Adolf K.Y. & Wang, Jin, 2014. "A new risk quantification approach in port facility security assessment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 72-90.
    18. Yang, Zhisen & Yang, Zaili & Teixeira, Angelo Palos, 2020. "Comparative analysis of the impact of new inspection regime on port state control inspection," Transport Policy, Elsevier, vol. 92(C), pages 65-80.
    19. Graziano, Armando & Mejia, Maximo Q. & Schröder-Hinrichs, Jens-Uwe, 2018. "Achievements and challenges on the implementation of the European Directive on Port State Control," Transport Policy, Elsevier, vol. 72(C), pages 97-108.
    20. Yang, Zhisen & Yang, Zaili & Yin, Jingbo & Qu, Zhuohua, 2018. "A risk-based game model for rational inspections in port state control," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 477-495.
    21. Asadabadi, Ali & Miller-Hooks, Elise, 2020. "Maritime port network resiliency and reliability through co-opetition," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 137(C).
    22. Cariou, Pierre & Wolff, Francois-Charles, 2015. "Identifying substandard vessels through Port State Control inspections: A new methodology for Concentrated Inspection Campaigns," Marine Policy, Elsevier, vol. 60(C), pages 27-39.
    23. Yang, Zhisen & Wan, Chengpeng & Yang, Zaili & Yu, Qing, 2021. "Using Bayesian network-based TOPSIS to aid dynamic port state control detention risk control decision," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    24. Wan, Chengpeng & Yan, Xinping & Zhang, Di & Qu, Zhuohua & Yang, Zaili, 2019. "An advanced fuzzy Bayesian-based FMEA approach for assessing maritime supply chain risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 222-240.
    25. Yang, Zhisen & Yang, Zaili & Yin, Jingbo, 2018. "Realising advanced risk-based port state control inspection using data-driven Bayesian networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 38-56.
    26. Yan, Ran & Wang, Shuaian & Cao, Jiannong & Sun, Defeng, 2021. "Shipping Domain Knowledge Informed Prediction and Optimization in Port State Control," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 52-78.
    27. Nguyen, Son & Chen, Peggy Shu-Ling & Du, Yuquan & Shi, Wenming, 2019. "A quantitative risk analysis model with integrated deliberative Delphi platform for container shipping operational risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 203-227.
    28. Jiang, Meizhi & Lu, Jing, 2020. "The analysis of maritime piracy occurred in Southeast Asia by using Bayesian network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 139(C).
    29. Bai, Xiwen & Cheng, Liangqi & Iris, Çağatay, 2022. "Data-driven financial and operational risk management: Empirical evidence from the global tramp shipping industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Zhisen & Yu, Qing & Yang, Zaili & Wan, Chengpeng, 2024. "A data-driven Bayesian model for evaluating the duration of detention of ships in PSC inspections," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Zhisen & Yu, Qing & Yang, Zaili & Wan, Chengpeng, 2024. "A data-driven Bayesian model for evaluating the duration of detention of ships in PSC inspections," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
    2. Liu, Kezhong & Yu, Qing & Yang, Zhisen & Wan, Chengpeng & Yang, Zaili, 2022. "BN-based port state control inspection for Paris MoU: New risk factors and probability training using big data," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    3. Fan, Lixian & Zhang, Meng & Yin, Jingbo & Zhang, Jinfen, 2022. "Impacts of dynamic inspection records on port state control efficiency using Bayesian network analysis," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    4. Yang, Zhisen & Wan, Chengpeng & Yang, Zaili & Yu, Qing, 2021. "Using Bayesian network-based TOPSIS to aid dynamic port state control detention risk control decision," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    5. Wang, Yuhong & Zhang, Fan & Yang, Zhisen & Yang, Zaili, 2021. "Incorporation of deficiency data into the analysis of the dependency and interdependency among the risk factors influencing port state control inspection," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    6. Zhu, Jiang-Hong & Yang, Qiang & Jiang, Jun, 2023. "Identifying crucial deficiency categories influencing ship detention: A method of combining cloud model and prospect theory," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    7. Yu, Qing & Teixeira, Ângelo Palos & Liu, Kezhong & Rong, Hao & Guedes Soares, Carlos, 2021. "An integrated dynamic ship risk model based on Bayesian Networks and Evidential Reasoning," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    8. Yan, Ran & Wang, Shuaian & Zhen, Lu, 2023. "An extended smart “predict, and optimize” (SPO) framework based on similar sets for ship inspection planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    9. Jiang, Meizhi & Lu, Jing, 2020. "The analysis of maritime piracy occurred in Southeast Asia by using Bayesian network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 139(C).
    10. Rong, H. & Teixeira, A.P. & Guedes Soares, C., 2022. "Maritime traffic probabilistic prediction based on ship motion pattern extraction," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    11. Dinis, D. & Teixeira, A.P. & Guedes Soares, C., 2020. "Probabilistic approach for characterising the static risk of ships using Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    12. Xuecheng Tian & Yanxia Guan & Shuaian Wang, 2023. "A Decision-Focused Learning Framework for Vessel Selection Problem," Mathematics, MDPI, vol. 11(16), pages 1-13, August.
    13. Xuecheng Tian & Shuaian Wang, 2022. "Cost-Sensitive Laplacian Logistic Regression for Ship Detention Prediction," Mathematics, MDPI, vol. 11(1), pages 1-15, December.
    14. Antão, P. & Sun, S. & Teixeira, A.P. & Guedes Soares, C., 2023. "Quantitative assessment of ship collision risk influencing factors from worldwide accident and fleet data," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    15. Yan, Ran & Wang, Shuaian & Fagerholt, Kjetil, 2020. "A semi-“smart predict then optimize” (semi-SPO) method for efficient ship inspection," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 100-125.
    16. Xiao, Yi & Qi, Guanqiu & Jin, Mengjie & Yuen, Kum Fai & Chen, Zhuo & Li, Kevin X., 2021. "Efficiency of Port State Control inspection regimes: A comparative study," Transport Policy, Elsevier, vol. 106(C), pages 165-172.
    17. Zhou, Yusheng & Li, Xue & Yuen, Kum Fai, 2022. "Holistic risk assessment of container shipping service based on Bayesian Network Modelling," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    18. Yu, Qing & Liu, Kezhong & Chang, Chia-Hsun & Yang, Zaili, 2020. "Realising advanced risk assessment of vessel traffic flows near offshore wind farms," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    19. Zhou, Kaiwen & Xing, Wenbin & Wang, Jingbo & Li, Huanhuan & Yang, Zaili, 2024. "A data-driven risk model for maritime casualty analysis: A global perspective," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    20. Liang, Xinrui & Fan, Shiqi & Lucy, John & Yang, Zaili, 2022. "Risk analysis of cargo theft from freight supply chains using a data-driven Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 226(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:180:y:2023:i:c:s1366554523003198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.