IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i17p11096-d907280.html
   My bibliography  Save this article

Predicting Maximum Work Duration for Construction Workers

Author

Listed:
  • Ran Yan

    (Department of Logistics and Maritime Studies, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China)

  • Wen Yi

    (School of Built Environment, College of Sciences, Massey University, Auckland 0632, New Zealand
    Department of Building and Real Estate, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China)

  • Shuaian Wang

    (Faculty of Business, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China)

Abstract

One of the most common health problems that threaten the transportation infrastructure construction workers in Hong Kong is heat stress. An effective way to reduce this problem is to design a proper work–rest schedule, and the key issue is predicting the maximum working duration given the different conditions of the workers and the surrounding environment, which is the research question of this study. Air temperature, an important input feature, is also determined by the maximum working duration itself, i.e., the input feature is a function of the prediction target. Therefore, the prediction model developed is different from ordinary prediction models and is hard to solve by standard statistical or machine learning models. For the prediction process, a trial-and-error algorithm is proposed to derive a solution based on two theorems that are rigorously proved; there exists a unique solution, and the solution is within a certain range in the prediction model. The proposed model and its solution approach were constructed and validated using simulated data; temperature data were collected from Hong Kong Observatory. The results showed that the mean squared error (MSE), mean absolute percentage error (MAPE), and R 2 of the test set were 0.1378, 0.1123, and 0.8182, respectively, showing that the prediction performance was generally accurate. This study can help construction practitioners and governments to rationally design the work–rest schedules of transportation infrastructure construction workers and thus protect them from the risks brought about by heat stress.

Suggested Citation

  • Ran Yan & Wen Yi & Shuaian Wang, 2022. "Predicting Maximum Work Duration for Construction Workers," Sustainability, MDPI, vol. 14(17), pages 1-12, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:11096-:d:907280
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/17/11096/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/17/11096/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jianghua Zhang & Daniel Zhuoyu Long & Rowan Wang & Chi Xie, 2021. "Impact of Penalty Cost on Customers' Booking Decisions," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1603-1614, June.
    2. Wang, Shuaian & Yan, Ran & Qu, Xiaobo, 2019. "Development of a non-parametric classifier: Effective identification, algorithm, and applications in port state control for maritime transportation," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 129-157.
    3. Yan, Ran & Wang, Shuaian & Du, Yuquan, 2020. "Development of a two-stage ship fuel consumption prediction and reduction model for a dry bulk ship," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    4. Yan, Ran & Wang, Shuaian & Cao, Jiannong & Sun, Defeng, 2021. "Shipping Domain Knowledge Informed Prediction and Optimization in Port State Control," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 52-78.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Xuecheng & Yan, Ran & Liu, Yannick & Wang, Shuaian, 2023. "A smart predict-then-optimize method for targeted and cost-effective maritime transportation," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 32-52.
    2. Yang, Zhisen & Wan, Chengpeng & Yu, Qing & Yin, Jingbo & Yang, Zaili, 2023. "A machine learning-based Bayesian model for predicting the duration of ship detention in PSC inspection," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
    3. Wen Yi & Robyn Phipps & Hans Wang, 2020. "Sustainable Ship Loading Planning for Prefabricated Products in the Construction Industry," Sustainability, MDPI, vol. 12(21), pages 1-12, October.
    4. Yang, Zhisen & Yu, Qing & Yang, Zaili & Wan, Chengpeng, 2024. "A data-driven Bayesian model for evaluating the duration of detention of ships in PSC inspections," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
    5. Yan, Ran & Liu, Yan & Wang, Shuaian, 2024. "A data-driven optimization approach to improving maritime transport efficiency," Transportation Research Part B: Methodological, Elsevier, vol. 180(C).
    6. Xuecheng Tian & Yanxia Guan & Shuaian Wang, 2023. "A Decision-Focused Learning Framework for Vessel Selection Problem," Mathematics, MDPI, vol. 11(16), pages 1-13, August.
    7. Yan, Ran & Wang, Shuaian & Zhen, Lu, 2023. "An extended smart “predict, and optimize” (SPO) framework based on similar sets for ship inspection planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    8. Xuecheng Tian & Shuaian Wang, 2022. "Cost-Sensitive Laplacian Logistic Regression for Ship Detention Prediction," Mathematics, MDPI, vol. 11(1), pages 1-15, December.
    9. Wang, Shuaian & Yan, Ran, 2023. "Fundamental challenge and solution methods in prescriptive analytics for freight transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    10. Ziegler Haselein, Bruno & da Silva, Jonny Carlos & Hooey, Becky L., 2024. "Multiple machine learning modeling on near mid-air collisions: An approach towards probabilistic reasoning," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    11. Meng, Bin & Chen, Shuiyang & Haralambides, Hercules & Kuang, Haibo & Fan, Lidong, 2023. "Information spillovers between carbon emissions trading prices and shipping markets: A time-frequency analysis," Energy Economics, Elsevier, vol. 120(C).
    12. Xizi Qiao & Ying Yang & King-Wah Pang & Yong Jin & Shuaian Wang, 2024. "Ship Selection and Inspection Scheduling in Inland Waterway Transport," Mathematics, MDPI, vol. 12(15), pages 1-23, July.
    13. Kiriakos Alexiou & Efthimios G. Pariotis & Helen C. Leligou & Theodoros C. Zannis, 2022. "Towards Data-Driven Models in the Prediction of Ship Performance (Speed—Power) in Actual Seas: A Comparative Study between Modern Approaches," Energies, MDPI, vol. 15(16), pages 1-18, August.
    14. Yang, Dong & Liao, Shiguan & Venus Lun, Y.H & Bai, Xiwen, 2023. "Towards sustainable port management: Data-driven global container ports turnover rate assessment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    15. Zhou, Yusheng & Li, Xue & Yuen, Kum Fai, 2022. "Holistic risk assessment of container shipping service based on Bayesian Network Modelling," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    16. Nguyen, Son & Fu, Xiuju & Ogawa, Daichi & Zheng, Qin, 2023. "An application-oriented testing regime and multi-ship predictive modeling for vessel fuel consumption prediction," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    17. Li, Huanhuan & Ren, Xujie & Yang, Zaili, 2023. "Data-driven Bayesian network for risk analysis of global maritime accidents," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    18. Yan, Ran & Wang, Shuaian & Fagerholt, Kjetil, 2020. "A semi-“smart predict then optimize” (semi-SPO) method for efficient ship inspection," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 100-125.
    19. Xuecheng Tian & Yanxia Guan & Shuaian Wang, 2023. "Data Transformation in the Predict-Then-Optimize Framework: Enhancing Decision Making under Uncertainty," Mathematics, MDPI, vol. 11(17), pages 1-12, September.
    20. Tayfun Uyanık & Yunus Yalman & Özcan Kalenderli & Yasin Arslanoğlu & Yacine Terriche & Chun-Lien Su & Josep M. Guerrero, 2022. "Data-Driven Approach for Estimating Power and Fuel Consumption of Ship: A Case of Container Vessel," Mathematics, MDPI, vol. 10(22), pages 1-21, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:11096-:d:907280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.