IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v253y2025ics0951832024006185.html
   My bibliography  Save this article

Resilience-Based Restoration Model for Optimizing Corrosion Repair Strategies in Tunnel Lining

Author

Listed:
  • Zhang, Qian
  • Nie, Yaoqi
  • Du, Yanliang
  • Zhao, Weigang
  • Cao, Shujie

Abstract

In tunnel engineering, the corrosion of steel rebar is a critical factor leading to structural degradation and failure, causing a decline in load-bearing capacity, deformation, and cracking. For decision-makers, identifying the optimal timing for tunnel maintenance and selecting effective repair strategies is of paramount importance. This study introduces a resilience-based restoration model to analyze tunnel failure due to corrosion throughout its service life and to optimize the timing and selection of maintenance strategies. The model generates time-variant failure curves by constructing limit equilibrium equations. The entropy weight method is employed to quantify and weight the impact of various failure modes, determining the timing for maintenance when the failure curve exceeds a predefined threshold. Additionally, the model's uncertainty is effectively reduced through regular inspections and Bayesian updating methods, enhancing prediction accuracy. The study further incorporates a resilience index and a benefit index to provide a quantitative assessment of maintenance plans, assisting decision-makers in selecting the optimal strategy. By exemplifying the model with a case study of steel rebar corrosion in a tunnel, this paper demonstrates the model's applicability and offers a new scientific approach for quantitative maintenance decision-making in tunnel engineering.

Suggested Citation

  • Zhang, Qian & Nie, Yaoqi & Du, Yanliang & Zhao, Weigang & Cao, Shujie, 2025. "Resilience-Based Restoration Model for Optimizing Corrosion Repair Strategies in Tunnel Lining," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
  • Handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006185
    DOI: 10.1016/j.ress.2024.110546
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024006185
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110546?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stewart, Mark G. & Al-Harthy, Ali, 2008. "Pitting corrosion and structural reliability of corroding RC structures: Experimental data and probabilistic analysis," Reliability Engineering and System Safety, Elsevier, vol. 93(3), pages 373-382.
    2. Zare Banadkouki, Mohammad Reza, 2023. "Selection of strategies to improve energy efficiency in industry: A hybrid approach using entropy weight method and fuzzy TOPSIS," Energy, Elsevier, vol. 279(C).
    3. Zhang, Qiang & Zhao, Yan-Gang & Kolozvari, Kristijan & Xu, Lei, 2022. "Reliability analysis of reinforced concrete structure against progressive collapse," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    4. Tan, Zhizhong & Wu, Bei & Che, Ada, 2023. "Resilience modeling for multi-state systems based on Markov processes," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    5. Marsh, Philip S. & Frangopol, Dan M., 2008. "Reinforced concrete bridge deck reliability model incorporating temporal and spatial variations of probabilistic corrosion rate sensor data," Reliability Engineering and System Safety, Elsevier, vol. 93(3), pages 394-409.
    6. Liu, Yushan & Li, Luyi & Chang, Zeming, 2023. "Efficient Bayesian model updating for dynamic systems," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    7. Pugliese, F. & De Risi, R. & Sarno, L. Di, 2022. "Reliability assessment of existing RC bridges with spatially-variable pitting corrosion subjected to increasing traffic demand," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    8. Bigaud, David & Ali, Osama, 2014. "Time-variant flexural reliability of RC beams with externally bonded CFRP under combined fatigue-corrosion actions," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 257-270.
    9. Ceferino, Luis & Lin, Ning & Xi, Dazhi, 2023. "Bayesian updating of solar panel fragility curves and implications of higher panel strength for solar generation resilience," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    10. Vishwanath, B Sharanbaswa & Banerjee, Swagata, 2023. "Considering uncertainty in corrosion process to estimate life-cycle seismic vulnerability and risk of aging bridge piers," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Tiao & Li, Chunhe & Zheng, Jian-jun & Hackl, Jürgen & Luan, Yao & Ishida, Tetsuya & Medepalli, Satya, 2023. "Consideration of coupling of crack development and corrosion in assessing the reliability of reinforced concrete beams subjected to bending," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    2. Vishwanath, B Sharanbaswa & Banerjee, Swagata, 2023. "Considering uncertainty in corrosion process to estimate life-cycle seismic vulnerability and risk of aging bridge piers," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    3. Qin, Xia & Kaewunruen, Sakdirat, 2024. "Machine learning and traditional approaches in shear reliability of steel fiber reinforced concrete beams," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    4. Bigaud, David & Ali, Osama, 2014. "Time-variant flexural reliability of RC beams with externally bonded CFRP under combined fatigue-corrosion actions," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 257-270.
    5. Zhou, Zhou & Yu, Xiaohui & Gardoni, Paolo & Ji, Kun & Lu, Dagang, 2025. "Seismic risk estimates for reinforced concrete structures with incorporation of corrosion and aftershock," Reliability Engineering and System Safety, Elsevier, vol. 254(PA).
    6. Yinan Wang & Heng Chen & Shuyuan Zhao & Lanxin Fan & Cheng Xin & Xue Jiang & Fan Yao, 2024. "Benefit Evaluation of Carbon Reduction in Power Transmission and Transformation Projects Based on the Modified TOPSIS-RSR Method," Energies, MDPI, vol. 17(12), pages 1-23, June.
    7. Li, Jin-Yang & Lu, Jubin & Zhou, Hao, 2023. "Reliability analysis of structures with inerter-based isolation layer under stochastic seismic excitations," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    8. Huang, Chenchen & Lin, Boqiang, 2024. "Digital economy solutions towards carbon neutrality: The critical role of energy efficiency and energy structure transformation," Energy, Elsevier, vol. 306(C).
    9. Pugliese, F. & De Risi, R. & Sarno, L. Di, 2022. "Reliability assessment of existing RC bridges with spatially-variable pitting corrosion subjected to increasing traffic demand," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    10. Dui, Hongyan & Zhu, Yawen & Tao, Junyong, 2024. "Multi-phased resilience methodology of urban sewage treatment network based on the phase and node recovery importance in IoT," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    11. Dong, Y. & Teixeira, A.P. & Guedes Soares, C., 2018. "Time-variant fatigue reliability assessment of welded joints based on the PHI2 and response surface methods," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 120-130.
    12. Liu, Qiang & Huang, Delong & Zhang, Bin & Tang, Aiping & Xu, Xiuchen, 2024. "Developing a probability-based technique to improve the measurement of landslide vulnerability on regional roads," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    13. Chen, Yun & Wang, Jie & Jin, Lianghai & Nie, Benwu & Zheng, Xiazhong, 2024. "A hybrid approach integrating case mining (CM) and the Copula Bayesian Network (CBN) for accident causation probabilistic reasoning of building construction collapses," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    14. Li, Chao & Diao, Yucheng & Li, Hong-Nan & Pan, Haiyang & Ma, Ruisheng & Han, Qiang & Xing, Yihan, 2023. "Seismic performance assessment of a sea-crossing cable-stayed bridge system considering soil spatial variability," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    15. Sun, Qin & Li, Hongxu & Zhong, Yuanfu & Ren, Kezhou & Zhang, Yingchao, 2024. "Deep reinforcement learning-based resilience enhancement strategy of unmanned weapon system-of-systems under inevitable interferences," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    16. Li, Si-Qi & Gardoni, Paolo, 2024. "Optimized seismic hazard and structural vulnerability model considering macroseismic intensity measures," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    17. Wang, Changxi & Elsayed, Elsayed A., 2020. "Stochastic modeling of corrosion growth," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    18. Raziye Norouzi Masir & Mohammad Ataei & Farhang Sereshki, 2024. "A novel index for shearer system resilience in underground coal mines based on the operational environment," Journal of Risk and Reliability, , vol. 238(3), pages 475-501, June.
    19. Liu, Yushan & Li, Luyi & Chang, Zeming, 2023. "Efficient Bayesian model updating for dynamic systems," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    20. Rajkumar B. Patil & San Kyeong & Michael Pecht & Rahul A. Gujar & Sandip Mane, 2025. "Assessment of Reliability Allocation Methods for Electronic Systems: A Systematic and Bibliometric Analysis," Stats, MDPI, vol. 8(1), pages 1-32, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.