IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v131y2014icp257-270.html
   My bibliography  Save this article

Time-variant flexural reliability of RC beams with externally bonded CFRP under combined fatigue-corrosion actions

Author

Listed:
  • Bigaud, David
  • Ali, Osama

Abstract

Time-variant reliability analysis of RC highway bridges strengthened with carbon fibre reinforced polymer CFRP laminates under four possible competing damage modes (concrete crushing, steel rupture after yielding, CFRP rupture and FRP plate debonding) and three degradation factors is analyzed in terms of reliability index β using FORM. The first degradation factor is chloride-attack corrosion which induces reduction in steel area and concrete cover cracking at characteristic key times (corrosion initiation, severe surface cover cracking). The second degradation factor considered is fatigue which leads to damage in concrete and steel rebar. Interaction between corrosion and fatigue crack growth in steel reinforcing bars is implemented. The third degradation phenomenon is the CFRP properties deterioration due to aging. Considering these three degradation factors, the time-dependent flexural reliability profile of a typical simple 15m-span intermediate girder of a RC highway bridge is constructed under various traffic volumes and under different corrosion environments. The bridge design options follow AASHTO-LRFD specifications. Results of the study have shown that the reliability is very sensitive to factors governing the corrosion. Concrete damage due to fatigue slightly affects reliability profile of non-strengthened section, while service life after strengthening is strongly related to fatigue damage in concrete.

Suggested Citation

  • Bigaud, David & Ali, Osama, 2014. "Time-variant flexural reliability of RC beams with externally bonded CFRP under combined fatigue-corrosion actions," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 257-270.
  • Handle: RePEc:eee:reensy:v:131:y:2014:i:c:p:257-270
    DOI: 10.1016/j.ress.2014.04.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832014000842
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2014.04.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Neves, Rodrigo A & Chateauneuf, Alaa & Venturini, Wilson S & Lemaire, Maurice, 2006. "Reliability analysis of reinforced concrete grids with nonlinear material behavior," Reliability Engineering and System Safety, Elsevier, vol. 91(6), pages 735-744.
    2. Stewart, Mark G. & Al-Harthy, Ali, 2008. "Pitting corrosion and structural reliability of corroding RC structures: Experimental data and probabilistic analysis," Reliability Engineering and System Safety, Elsevier, vol. 93(3), pages 373-382.
    3. Val, Dimitri V. & Trapper, Pavel A., 2008. "Probabilistic evaluation of initiation time of chloride-induced corrosion," Reliability Engineering and System Safety, Elsevier, vol. 93(3), pages 364-372.
    4. Choe, Do-Eun & Gardoni, Paolo & Rosowsky, David & Haukaas, Terje, 2008. "Probabilistic capacity models and seismic fragility estimates for RC columns subject to corrosion," Reliability Engineering and System Safety, Elsevier, vol. 93(3), pages 383-393.
    5. Marsh, Philip S. & Frangopol, Dan M., 2008. "Reinforced concrete bridge deck reliability model incorporating temporal and spatial variations of probabilistic corrosion rate sensor data," Reliability Engineering and System Safety, Elsevier, vol. 93(3), pages 394-409.
    6. Sudret, B., 2008. "Probabilistic models for the extent of damage in degrading reinforced concrete structures," Reliability Engineering and System Safety, Elsevier, vol. 93(3), pages 410-422.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khakifirooz, Marzieh & Fathi, Michel & Lee, I-Chen & Tseng, Sheng-Tsaing, 2023. "Neural ordinary differential equation for sequential optimal design of fatigue test under accelerated life test analysis," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    2. Dong, Y. & Teixeira, A.P. & Guedes Soares, C., 2018. "Time-variant fatigue reliability assessment of welded joints based on the PHI2 and response surface methods," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 120-130.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vishwanath, B Sharanbaswa & Banerjee, Swagata, 2023. "Considering uncertainty in corrosion process to estimate life-cycle seismic vulnerability and risk of aging bridge piers," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    2. Suo, Qinghui & Stewart, Mark G., 2009. "Corrosion cracking prediction updating of deteriorating RC structures using inspection information," Reliability Engineering and System Safety, Elsevier, vol. 94(8), pages 1340-1348.
    3. Ghosh, Jayadipta & Sood, Piyush, 2016. "Consideration of time-evolving capacity distributions and improved degradation models for seismic fragility assessment of aging highway bridges," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 197-218.
    4. Wang, Tiao & Li, Chunhe & Zheng, Jian-jun & Hackl, Jürgen & Luan, Yao & Ishida, Tetsuya & Medepalli, Satya, 2023. "Consideration of coupling of crack development and corrosion in assessing the reliability of reinforced concrete beams subjected to bending," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    5. Hariri-Ardebili, Mohammad Amin, 2020. "Safety and reliability assessment of heterogeneous concrete components in nuclear structures," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    6. Ching, Jianye & Leu, Sou-Sen, 2009. "Bayesian updating of reliability of civil infrastructure facilities based on condition-state data and fault-tree model," Reliability Engineering and System Safety, Elsevier, vol. 94(12), pages 1962-1974.
    7. Morshedi, Mohamad Ali & Kashani, Hamed, 2022. "Assessment of vulnerability reduction policies: Integration of economic and cognitive models of decision-making," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    8. Chien-Kuo Chiu & Fung-Chung Tu & Cheng-Yu Fan, 2015. "Risk assessment of environmental corrosion for reinforcing steel bars embedded in concrete in Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 581-611, January.
    9. Barone, Giorgio & Frangopol, Dan M., 2014. "Reliability, risk and lifetime distributions as performance indicators for life-cycle maintenance of deteriorating structures," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 21-37.
    10. Ryan, Paraic C. & Stewart, Mark G. & Spencer, Nathan & Li, Yue, 2014. "Reliability assessment of power pole infrastructure incorporating deterioration and network maintenance," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 261-273.
    11. Yan Liang & Jia-lei Yan & Jun-lei Wang & Peng Zhang & Bao-jie He, 2019. "Analysis on the Time-Varying Fragility of Offshore Concrete Bridge," Complexity, Hindawi, vol. 2019, pages 1-22, January.
    12. He, Jingjing & Huang, Min & Wang, Wei & Wang, Shaohua & Guan, Xuefei, 2021. "An asymptotic stochastic response surface approach to reliability assessment under multi-source heterogeneous uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    13. Gangolu, Jaswanth & Kumar, Ajay & Bhuyan, Kasturi & Sharma, Hrishikesh, 2022. "Probabilistic demand models and performance-based fragility estimates for concrete protective structures subjected to missile impact," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    14. Zhao, Yan-Gang & Qin, Miao-Jun & Lu, Zhao-Hui & Zhang, Long-Wen, 2021. "Seismic fragility analysis of nuclear power plants considering structural parameter uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    15. Yang, Yiming & Peng, Jianxin & Cai, C.S. & Zhou, Yadong & Wang, Lei & Zhang, Jianren, 2022. "Time-dependent reliability assessment of aging structures considering stochastic resistance degradation process," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    16. Byun, Ji-Eun & Zwirglmaier, Kilian & Straub, Daniel & Song, Junho, 2019. "Matrix-based Bayesian Network for efficient memory storage and flexible inference," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 533-545.
    17. Zhou, Daoqing & Sun, C.P. & Du, Yi-Mu & Guan, Xuefei, 2022. "Degradation and reliability of multi-function systems using the hazard rate matrix and Markovian approximation," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    18. Chao Jiang & Jing Fang, 2020. "Time-Dependent Reliability-Based Service Life Assessment of RC Bridges Subjected to Carbonation under a Changing Climate," Sustainability, MDPI, vol. 12(3), pages 1-18, February.
    19. Lv, Ya-jun & Wang, Jun-wei & Wang, Julian & Xiong, Cheng & Zou, Liang & Li, Ly & Li, Da-wang, 2020. "Steel corrosion prediction based on support vector machines," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    20. Rougé, Charles & Mathias, Jean-Denis & Deffuant, Guillaume, 2014. "Relevance of control theory to design and maintenance problems in time-variant reliability: The case of stochastic viability," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 250-260.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:131:y:2014:i:c:p:257-270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.