IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i7p1695-d1369023.html
   My bibliography  Save this article

Predicting the Remaining Useful Life of Lithium-Ion Batteries Using 10 Random Data Points and a Flexible Parallel Neural Network

Author

Listed:
  • Lidang Jiang

    (School of Chemical Engineering, Sichuan University, Chengdu 610065, China
    Current address: Sichuan University Wangjiang Campus, Wuhou District, Chengdu 610065, China.)

  • Qingsong Huang

    (School of Chemical Engineering, Sichuan University, Chengdu 610065, China)

  • Ge He

    (School of Chemical Engineering, Sichuan University, Chengdu 610065, China)

Abstract

Accurate Remaining Useful Life (RUL) prediction of lithium batteries is crucial for enhancing their performance and extending their lifespan. Existing studies focus on continuous or relatively sparse datasets; however, continuous and complete datasets are rarely available in practical applications due to missing or inaccessible data. This study attempts to achieve the prediction of lithium battery RUL using random sparse data from only 10 data points, aligning more closely with practical industrial scenarios. Furthermore, we introduce the application of a Flexible Parallel Neural Network (FPNN) for the first time in predicting the RUL of lithium batteries. By combining these two approaches, our tests on the MIT dataset show that by randomly downsampling 10 points per cycle from 10 cycles, we can reconstruct new meaningful features and achieve a Mean Absolute Percentage Error (MAPE) of 2.36% in predicting the RUL. When the input data are limited to the first 10 cycles using the dataset constructed from random downsampling and the FPNN, the predicted RUL MAPE is 0.75%. The method proposed in this study offers an accurate, adaptable, and comprehensible new solution for predicting the RUL of lithium batteries, paving a new research path in the field of battery health monitoring.

Suggested Citation

  • Lidang Jiang & Qingsong Huang & Ge He, 2024. "Predicting the Remaining Useful Life of Lithium-Ion Batteries Using 10 Random Data Points and a Flexible Parallel Neural Network," Energies, MDPI, vol. 17(7), pages 1-20, April.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1695-:d:1369023
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/7/1695/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/7/1695/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. He, Yao & Liu, XingTao & Zhang, ChenBin & Chen, ZongHai, 2013. "A new model for State-of-Charge (SOC) estimation for high-power Li-ion batteries," Applied Energy, Elsevier, vol. 101(C), pages 808-814.
    2. Ma, Guijun & Zhang, Yong & Cheng, Cheng & Zhou, Beitong & Hu, Pengchao & Yuan, Ye, 2019. "Remaining useful life prediction of lithium-ion batteries based on false nearest neighbors and a hybrid neural network," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    3. Zhang, Qisong & Yang, Lin & Guo, Wenchao & Qiang, Jiaxi & Peng, Cheng & Li, Qinyi & Deng, Zhongwei, 2022. "A deep learning method for lithium-ion battery remaining useful life prediction based on sparse segment data via cloud computing system," Energy, Elsevier, vol. 241(C).
    4. Ng, Selina S.Y. & Xing, Yinjiao & Tsui, Kwok L., 2014. "A naive Bayes model for robust remaining useful life prediction of lithium-ion battery," Applied Energy, Elsevier, vol. 118(C), pages 114-123.
    5. Patil, Meru A. & Tagade, Piyush & Hariharan, Krishnan S. & Kolake, Subramanya M. & Song, Taewon & Yeo, Taejung & Doo, Seokgwang, 2015. "A novel multistage Support Vector Machine based approach for Li ion battery remaining useful life estimation," Applied Energy, Elsevier, vol. 159(C), pages 285-297.
    6. Yang, Yixin, 2021. "A machine-learning prediction method of lithium-ion battery life based on charge process for different applications," Applied Energy, Elsevier, vol. 292(C).
    7. Chang, Yang & Fang, Huajing & Zhang, Yong, 2017. "A new hybrid method for the prediction of the remaining useful life of a lithium-ion battery," Applied Energy, Elsevier, vol. 206(C), pages 1564-1578.
    8. Chen, Dinghong & Zhang, Weige & Zhang, Caiping & Sun, Bingxiang & Cong, XinWei & Wei, Shaoyuan & Jiang, Jiuchun, 2022. "A novel deep learning-based life prediction method for lithium-ion batteries with strong generalization capability under multiple cycle profiles," Applied Energy, Elsevier, vol. 327(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Bo & Zhang, Weige & Zhang, Yanru & Zhang, Caiping & Zhang, Chi & Zhang, Junwei, 2024. "Research on the remaining useful life prediction method for lithium-ion batteries by fusion of feature engineering and deep learning," Applied Energy, Elsevier, vol. 358(C).
    2. Chen, Dinghong & Zhang, Weige & Zhang, Caiping & Sun, Bingxiang & Cong, XinWei & Wei, Shaoyuan & Jiang, Jiuchun, 2022. "A novel deep learning-based life prediction method for lithium-ion batteries with strong generalization capability under multiple cycle profiles," Applied Energy, Elsevier, vol. 327(C).
    3. Dai, Haifeng & Jiang, Bo & Hu, Xiaosong & Lin, Xianke & Wei, Xuezhe & Pecht, Michael, 2021. "Advanced battery management strategies for a sustainable energy future: Multilayer design concepts and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    4. Rauf, Huzaifa & Khalid, Muhammad & Arshad, Naveed, 2022. "Machine learning in state of health and remaining useful life estimation: Theoretical and technological development in battery degradation modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    5. Jun Peng & Zhiyong Zheng & Xiaoyong Zhang & Kunyuan Deng & Kai Gao & Heng Li & Bin Chen & Yingze Yang & Zhiwu Huang, 2020. "A Data-Driven Method with Feature Enhancement and Adaptive Optimization for Lithium-Ion Battery Remaining Useful Life Prediction," Energies, MDPI, vol. 13(3), pages 1-20, February.
    6. Liu, Yunpeng & Hou, Bo & Ahmed, Moin & Mao, Zhiyu & Feng, Jiangtao & Chen, Zhongwei, 2024. "A hybrid deep learning approach for remaining useful life prediction of lithium-ion batteries based on discharging fragments," Applied Energy, Elsevier, vol. 358(C).
    7. Yang, Yixin, 2021. "A machine-learning prediction method of lithium-ion battery life based on charge process for different applications," Applied Energy, Elsevier, vol. 292(C).
    8. Semeraro, Concetta & Caggiano, Mariateresa & Olabi, Abdul-Ghani & Dassisti, Michele, 2022. "Battery monitoring and prognostics optimization techniques: Challenges and opportunities," Energy, Elsevier, vol. 255(C).
    9. Tang, Aihua & Jiang, Yihan & Nie, Yuwei & Yu, Quanqing & Shen, Weixiang & Pecht, Michael G., 2023. "Health and lifespan prediction considering degradation patterns of lithium-ion batteries based on transferable attention neural network," Energy, Elsevier, vol. 279(C).
    10. Hong, Joonki & Lee, Dongheon & Jeong, Eui-Rim & Yi, Yung, 2020. "Towards the swift prediction of the remaining useful life of lithium-ion batteries with end-to-end deep learning," Applied Energy, Elsevier, vol. 278(C).
    11. He, Guannan & Ciez, Rebecca & Moutis, Panayiotis & Kar, Soummya & Whitacre, Jay F., 2020. "The economic end of life of electrochemical energy storage," Applied Energy, Elsevier, vol. 273(C).
    12. Wu, Ji & Zhang, Chenbin & Chen, Zonghai, 2016. "An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks," Applied Energy, Elsevier, vol. 173(C), pages 134-140.
    13. Pang, Hui & Chen, Kaiqiang & Geng, Yuanfei & Wu, Longxing & Wang, Fengbin & Liu, Jiahao, 2024. "Accurate capacity and remaining useful life prediction of lithium-ion batteries based on improved particle swarm optimization and particle filter," Energy, Elsevier, vol. 293(C).
    14. Lee, Jaewook & Lee, Jay H., 2024. "Simultaneous extraction of intra- and inter-cycle features for predicting lithium-ion battery's knees using convolutional and recurrent neural networks," Applied Energy, Elsevier, vol. 356(C).
    15. Li, Chuan & Zhang, Huahua & Ding, Ping & Yang, Shuai & Bai, Yun, 2023. "Deep feature extraction in lifetime prognostics of lithium-ion batteries: Advances, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    16. Yang, Duo & Wang, Yujie & Pan, Rui & Chen, Ruiyang & Chen, Zonghai, 2018. "State-of-health estimation for the lithium-ion battery based on support vector regression," Applied Energy, Elsevier, vol. 227(C), pages 273-283.
    17. Ma, Guijun & Zhang, Yong & Cheng, Cheng & Zhou, Beitong & Hu, Pengchao & Yuan, Ye, 2019. "Remaining useful life prediction of lithium-ion batteries based on false nearest neighbors and a hybrid neural network," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    18. Shu, Xing & Li, Guang & Shen, Jiangwei & Lei, Zhenzhen & Chen, Zheng & Liu, Yonggang, 2020. "A uniform estimation framework for state of health of lithium-ion batteries considering feature extraction and parameters optimization," Energy, Elsevier, vol. 204(C).
    19. Du, Jingcai & Zhang, Caiping & Li, Shuowei & Zhang, Linjing & Zhang, Weige, 2024. "Two-stage prediction method for capacity aging trajectories of lithium-ion batteries based on Siamese-convolutional neural network," Energy, Elsevier, vol. 295(C).
    20. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Gwan-Soo Park & Hee-Je Kim, 2019. "Online Remaining Useful Life Prediction for Lithium-Ion Batteries Using Partial Discharge Data Features," Energies, MDPI, vol. 12(22), pages 1-14, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1695-:d:1369023. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.