Author
Listed:
- Cai, Li
- Deng, Xuanhong
- Yin, Hongpeng
- Lin, Jingdong
- Qin, Yan
Abstract
Generalized zero-sample fault diagnosis (GZSFD) is a challenging task involving the diagnosis of all samples from both previously seen and unseen faults. However, the scarcity of unseen samples for training causes that existing methods are hindered by domain bias, where unseen faults are more likely to be misclassified as seen faults. In this article, an efficacious solution is proposed by constructing an unseen fault detector for test samples in GZSFD with domain bias, which utilizes the detected unseen-sample knowledge to enhance the diagnosis performance. Specifically, a ResNet-based one-dimensional convolutional neural network is designed for high-quality feature extraction. Also, a Kullback–Leibler divergence-based distribution threshold detector is constructed for the identification of test samples. Afterwards, test samples are detected and distinguished into seen or unseen classes. In detected unseen classes, a zero-sample fault diagnosis (ZSFD) problem is undertaken, while in detected seen classes, a sub-GZSFD problem is addressed. For ZSFD tasks, to leverage the unseen samples in the test set, a clustering-based scheme without a predefined cluster number is used for the detected unseen fault. For sub-GZSFD tasks, combined with classification results in the ZSFD task, two embedding strategies are proposed to further mitigate the domain bias. They learn a shared weight and the optimal weights of semantic attributes from the feature space to the semantic embedding space, respectively. Using the shared fine-grained semantic attribute descriptions as auxiliary information, the final fault category can be determined. Experimental results showcase that the proposed strategies effectively alleviate the domain bias in GZSFD tasks.
Suggested Citation
Cai, Li & Deng, Xuanhong & Yin, Hongpeng & Lin, Jingdong & Qin, Yan, 2025.
"Generalized zero-sample industrial fault diagnosis with domain bias,"
Reliability Engineering and System Safety, Elsevier, vol. 253(C).
Handle:
RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006434
DOI: 10.1016/j.ress.2024.110571
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006434. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.