IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v93y2008i11p1584-1593.html
   My bibliography  Save this article

Matrix-based system reliability method and applications to bridge networks

Author

Listed:
  • Kang, Won-Hee
  • Song, Junho
  • Gardoni, Paolo

Abstract

Using a matrix-based system reliability (MSR) method, one can estimate the probabilities of complex system events by simple matrix calculations. Unlike existing system reliability methods whose complexity depends highly on that of the system event, the MSR method describes any general system event in a simple matrix form and therefore provides a more convenient way of handling the system event and estimating its probability. Even in the case where one has incomplete information on the component probabilities and/or the statistical dependence thereof, the matrix-based framework enables us to estimate the narrowest bounds on the system failure probability by linear programming. This paper presents the MSR method and applies it to a transportation network consisting of bridge structures. The seismic failure probabilities of bridges are estimated by use of the predictive fragility curves developed by a Bayesian methodology based on experimental data and existing deterministic models of the seismic capacity and demand. Using the MSR method, the probability of disconnection between each city/county and a critical facility is estimated. The probability mass function of the number of failed bridges is computed as well. In order to quantify the relative importance of bridges, the MSR method is used to compute the conditional probabilities of bridge failures given that there is at least one city disconnected from the critical facility. The bounds on the probability of disconnection are also obtained for cases with incomplete information.

Suggested Citation

  • Kang, Won-Hee & Song, Junho & Gardoni, Paolo, 2008. "Matrix-based system reliability method and applications to bridge networks," Reliability Engineering and System Safety, Elsevier, vol. 93(11), pages 1584-1593.
  • Handle: RePEc:eee:reensy:v:93:y:2008:i:11:p:1584-1593
    DOI: 10.1016/j.ress.2008.02.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832008000392
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2008.02.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Der Kiureghian, Armen & Song, Junho, 2008. "Multi-scale reliability analysis and updating of complex systems by use of linear programming," Reliability Engineering and System Safety, Elsevier, vol. 93(2), pages 288-297.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodríguez, Joanna & Lillo, Rosa E. & Ramírez-Cobo, Pepa, 2015. "Failure modeling of an electrical N-component framework by the non-stationary Markovian arrival process," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 126-133.
    2. Bensi, Michelle & Kiureghian, Armen Der & Straub, Daniel, 2013. "Efficient Bayesian network modeling of systems," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 200-213.
    3. Kim, Dong-Seok & Ok, Seung-Yong & Song, Junho & Koh, Hyun-Moo, 2013. "System reliability analysis using dominant failure modes identified by selective searching technique," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 316-331.
    4. Tien, Iris & Der Kiureghian, Armen, 2016. "Algorithms for Bayesian network modeling and reliability assessment of infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 134-147.
    5. Byun, Ji-Eun & de Oliveira, Welington & Royset, Johannes O., 2023. "S-BORM: Reliability-based optimization of general systems using buffered optimization and reliability method," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    6. Ebrahimi, Nader & Shehadeh, Mahmoud, 2015. "Assessing the reliability of components with micro- and nano-structures when they are part a multi-scale system," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 13-20.
    7. Wang, Zhiheng & Hawi, Philippe & Masri, Sami & Aitharaju, Venkat & Ghanem, Roger, 2023. "Stochastic multiscale modeling for quantifying statistical and model errors with application to composite materials," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    8. Stern, R.E. & Song, J. & Work, D.B., 2017. "Accelerated Monte Carlo system reliability analysis through machine-learning-based surrogate models of network connectivity," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 1-9.
    9. Tong, Yanjie & Tien, Iris, 2019. "Analytical probability propagation method for reliability analysis of general complex networks," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 21-30.
    10. Bichon, Barron J. & McFarland, John M. & Mahadevan, Sankaran, 2011. "Efficient surrogate models for reliability analysis of systems with multiple failure modes," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1386-1395.
    11. Zohre Alipour & Mohammad Ali Saniee Monfared & Enrico Zio, 2014. "Comparing topological and reliability-based vulnerability analysis of Iran power transmission network," Journal of Risk and Reliability, , vol. 228(2), pages 139-151, April.
    12. Kang, Won-Hee & Kliese, Alyce, 2014. "A rapid reliability estimation method for directed acyclic lifeline networks with statistically dependent components," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 81-91.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:93:y:2008:i:11:p:1584-1593. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.