IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v202y2020ics0951832020305123.html
   My bibliography  Save this article

Algorithms for Bayesian network modeling and reliability inference of complex multistate systems: Part I – Independent systems

Author

Listed:
  • Zheng, Xiaohu
  • Yao, Wen
  • Xu, Yingchun
  • Chen, Xiaoqian

Abstract

As the number of complex multistate systems’ components increases, one major challenge to analyze the reliabilities of complex multistate systems by Bayesian network (BN) is that the memory storage requirements (MSRs) of conditional probability table (CPT) increase exponentially. When the components reach a certain amount, the MSRs of CPT will exceed the computer's random access memory (RAM). To solve this problem, this two-part paper proposes a novel multistate compression algorithm to compress the CPT so that the MSRs of CPT can be reduced apparently. In this Part I, an independent multistate inference algorithm is proposed to perform the inference of BN based on the compressed CPT for the complex multistate independent systems. Given the evidence of system, the backward inference algorithm is proposed to update the probability distributions of compoents. The above proposed algorithms can be generally applied to any complex multistate independent system without constraints on system structure and state configurations. In addition, the Part II studies the application of compression idea in the complex multistate dependent systems. Finally, two case studies are used to validate the performance of the proposed algorithms.

Suggested Citation

  • Zheng, Xiaohu & Yao, Wen & Xu, Yingchun & Chen, Xiaoqian, 2020. "Algorithms for Bayesian network modeling and reliability inference of complex multistate systems: Part I – Independent systems," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
  • Handle: RePEc:eee:reensy:v:202:y:2020:i:c:s0951832020305123
    DOI: 10.1016/j.ress.2020.107011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832020305123
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.107011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Mingyang & Liu, Jian & Li, Jing & Uk Kim, Byoung, 2014. "Bayesian modeling of multi-state hierarchical systems with multi-level information aggregation," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 158-164.
    2. Iris Tien, 2017. "Bayesian Network Methods for Modeling and Reliability Assessment of Infrastructure Systems," Springer Series in Reliability Engineering, in: Paolo Gardoni (ed.), Risk and Reliability Analysis: Theory and Applications, pages 417-452, Springer.
    3. Tien, Iris & Der Kiureghian, Armen, 2016. "Algorithms for Bayesian network modeling and reliability assessment of infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 134-147.
    4. Isaac Dialsingh, 2014. "Risk assessment and decision analysis with Bayesian networks," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(4), pages 910-910, April.
    5. Levitin, Gregory & Jia, Heping & Ding, Yi & Song, Yonghua & Dai, Yuanshun, 2017. "Reliability of multi-state systems with free access to repairable standby elements," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 192-197.
    6. Zheng, Xiaohu & Yao, Wen & Xu, Yingchun & Chen, Xianqi, 2019. "Improved compression inference algorithm for reliability analysis of complex multistate satellite system based on multilevel Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 123-142.
    7. Yao, Wen & Chen, Xiaoqian & Huang, Yiyong & van Tooren, Michel, 2013. "An enhanced unified uncertainty analysis approach based on first order reliability method with single-level optimization," Reliability Engineering and System Safety, Elsevier, vol. 116(C), pages 28-37.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Xiaohu & Yao, Wen & Xu, Yingchun & Wang, Ning, 2024. "Algorithms for Bayesian network modeling and reliability inference of complex multistate systems with common cause failure," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    2. Yao, Wen & Zheng, Xiaohu & Zhang, Jun & Wang, Ning & Tang, Guijian, 2023. "Deep adaptive arbitrary polynomial chaos expansion: A mini-data-driven semi-supervised method for uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    3. Huang, Tudi & Xiahou, Tangfan & Mi, Jinhua & Chen, Hong & Huang, Hong-Zhong & Liu, Yu, 2024. "Merging multi-level evidential observations for dynamic reliability assessment of hierarchical multi-state systems: A dynamic Bayesian network approach," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    4. Zheng, Xiaohu & Yao, Wen & Zhang, Xiaoya & Qian, Weiqi & Zhang, Hairui, 2023. "Parameterized coefficient fine-tuning-based polynomial chaos expansion method for sphere-biconic reentry vehicle reliability analysis and design," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    5. Jia, Xiang & Guo, Bo, 2022. "Reliability analysis for complex system with multi-source data integration and multi-level data transmission," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    6. Byun, Ji-Eun & Song, Junho, 2021. "A general framework of Bayesian network for system reliability analysis using junction tree," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    7. Zheng, Xiaohu & Yao, Wen & Zhang, Yunyang & Zhang, Xiaoya, 2022. "Consistency regularization-based deep polynomial chaos neural network method for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 227(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Xiaohu & Yao, Wen & Zhang, Yunyang & Zhang, Xiaoya, 2022. "Consistency regularization-based deep polynomial chaos neural network method for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    2. Moradi, Ramin & Cofre-Martel, Sergio & Lopez Droguett, Enrique & Modarres, Mohammad & Groth, Katrina M., 2022. "Integration of deep learning and Bayesian networks for condition and operation risk monitoring of complex engineering systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    3. Zheng, Xiaohu & Yao, Wen & Xu, Yingchun & Chen, Xianqi, 2019. "Improved compression inference algorithm for reliability analysis of complex multistate satellite system based on multilevel Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 123-142.
    4. Xu, Yingchun & Yao, Wen & Zheng, Xiaohu & Chen, Xiaoqian, 2020. "An iterative information integration method for multi-level system reliability analysis based on Bayesian Melding Method," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    5. Damircheli, Mahrad & Fakoor, Mahdi & Yadegari, Hamed, 2020. "Failure assessment logic model (FALM): A new approach for reliability analysis of satellite attitude control subsystem," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    6. Tong, Yanjie & Tien, Iris, 2019. "Analytical probability propagation method for reliability analysis of general complex networks," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 21-30.
    7. Zheng, Xiaohu & Yao, Wen & Zhang, Xiaoya & Qian, Weiqi & Zhang, Hairui, 2023. "Parameterized coefficient fine-tuning-based polynomial chaos expansion method for sphere-biconic reentry vehicle reliability analysis and design," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    8. Zheng, Xiaohu & Yao, Wen & Xu, Yingchun & Wang, Ning, 2024. "Algorithms for Bayesian network modeling and reliability inference of complex multistate systems with common cause failure," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    9. Fang, Chen & Cui, Lirong, 2021. "Balanced Systems by Considering Multi-state Competing Risks Under Degradation Processes," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    10. Costa, Rodrigo & Haukaas, Terje & Chang, Stephanie E. & Dowlatabadi, Hadi, 2019. "Object-oriented model of the seismic vulnerability of the fuel distribution network in coastal British Columbia," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 11-23.
    11. Geng, Sunyue & Liu, Sifeng & Fang, Zhigeng, 2021. "Resilient communication model for satellite networks using clustering technique," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    12. Wang, Lizhi & Pan, Rong & Wang, Xiaohong & Fan, Wenhui & Xuan, Jinquan, 2017. "A Bayesian reliability evaluation method with different types of data from multiple sources," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 128-135.
    13. Yontay, Petek & Pan, Rong, 2016. "A computational Bayesian approach to dependency assessment in system reliability," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 104-114.
    14. Ruiz-Castro, Juan Eloy & Dawabsha, Mohammed & Alonso, Francisco Javier, 2018. "Discrete-time Markovian arrival processes to model multi-state complex systems with loss of units and an indeterminate variable number of repairpersons," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 114-127.
    15. Wang, Wei & Wu, Zhiying & Xiong, Junlin & Xu, Yaofeng, 2018. "Redundancy optimization of cold-standby systems under periodic inspection and maintenance," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 394-402.
    16. Qu, Pengfei & Zhang, Limao & Zhu, Qizhi & Wu, Maozhi, 2023. "Probabilistic reliability assessment of twin tunnels considering fluid–solid coupling with physics-guided machine learning," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    17. Yingchun Xu & Xiaohu Zheng & Wen Yao & Ning Wang & Xiaoqian Chen, 2021. "A sequential multi-prior integration and updating method for complex multi-level system based on Bayesian melding method," Journal of Risk and Reliability, , vol. 235(5), pages 863-876, October.
    18. Rebello, Sinda & Yu, Hongyang & Ma, Lin, 2018. "An integrated approach for system functional reliability assessment using Dynamic Bayesian Network and Hidden Markov Model," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 124-135.
    19. Rui Han & Shiqi Yang, 2023. "A Study on Industrial Heritage Renewal Strategy Based on Hybrid Bayesian Network," Sustainability, MDPI, vol. 15(13), pages 1-32, July.
    20. Song, Yufei & Mi, Jinhua & Cheng, Yuhua & Bai, Libing & Chen, Kai, 2020. "A dependency bounds analysis method for reliability assessment of complex system with hybrid uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 204(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:202:y:2020:i:c:s0951832020305123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.