IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v172y2018icp36-44.html
   My bibliography  Save this article

Improving failure analysis efficiency by combining FTA and FMEA in a recursive manner

Author

Listed:
  • Peeters, J.F.W.
  • Basten, R.J.I.
  • Tinga, T.

Abstract

When designing a maintenance programme for a capital good, especially a new one, it is of key importance to accurately understand its failure behaviour. Failure mode and effects analysis (FMEA) and fault tree analysis (FTA) are two commonly used methods for failure analysis. FMEA is a bottom-up method that is less structured and requires more expert knowledge than FTA, which is a top-down method. Both methods are time-consuming when applied thoroughly, which is why in many cases, they are not applied at all. We propose a method in which both are used in a recursive manner: First, a system level FTA is performed, which results in a set of failure modes. Using FMEA, the criticality of the failure modes is assessed in order to select only the critical system level failure modes. For each of those, a function level FTA is performed, followed by an FMEA. Finally, a component level FTA and FMEA are performed on the critical function level failure modes. We apply our method to a recently developed additive manufacturing system for metal printing, the MetalFAB1 of Additive Industries (AI), and find that the engineers at AI consider the method to be efficient and effective.

Suggested Citation

  • Peeters, J.F.W. & Basten, R.J.I. & Tinga, T., 2018. "Improving failure analysis efficiency by combining FTA and FMEA in a recursive manner," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 36-44.
  • Handle: RePEc:eee:reensy:v:172:y:2018:i:c:p:36-44
    DOI: 10.1016/j.ress.2017.11.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832017304192
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2017.11.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tinga, Tiedo, 2010. "Application of physical failure models to enable usage and load based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 95(10), pages 1061-1075.
    2. Selvik, J.T. & Aven, T., 2011. "A framework for reliability and risk centered maintenance," Reliability Engineering and System Safety, Elsevier, vol. 96(2), pages 324-331.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ayse Sena Eruguz & Tarkan Tan & Geert‐Jan van Houtum, 2017. "Optimizing usage and maintenance decisions for k‐out‐of‐n systems of moving assets," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(5), pages 418-434, August.
    2. Dharmaraja, S. & Vinayak, Resham & Trivedi, Kishor S., 2016. "Reliability and survivability of vehicular ad hoc networks: An analytical approach," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 28-38.
    3. Marlow, David R. & Beale, David J. & Mashford, John S., 2012. "Risk-based prioritization and its application to inspection of valves in the water sector," Reliability Engineering and System Safety, Elsevier, vol. 100(C), pages 67-74.
    4. Alberti, Alexandre R. & Cavalcante, Cristiano A.V. & Scarf, Philip & Silva, André L.O., 2018. "Modelling inspection and replacement quality for a protection system," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 145-153.
    5. Jiang, R., 2013. "A tradeoff BX life and its applications," Reliability Engineering and System Safety, Elsevier, vol. 113(C), pages 1-6.
    6. Jiang, R. & Murthy, D.N.P., 2011. "A study of Weibull shape parameter: Properties and significance," Reliability Engineering and System Safety, Elsevier, vol. 96(12), pages 1619-1626.
    7. Poppe, Joeri & Basten, Rob J.I. & Boute, Robert N. & Lambrecht, Marc R., 2017. "Numerical study of inventory management under various maintenance policies," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 262-273.
    8. Cheng, Minghui & Frangopol, Dan M., 2022. "Life-cycle optimization of structural systems based on cumulative prospect theory: Effects of the reference point and risk attitudes," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    9. Tiedo Tinga & Rene Janssen, 2013. "The interplay between deployment and optimal maintenance intervals for complex multi-component systems," Journal of Risk and Reliability, , vol. 227(3), pages 227-240, June.
    10. Goossens, Adriaan J.M. & Basten, Rob J.I., 2015. "Exploring maintenance policy selection using the Analytic Hierarchy Process; An application for naval ships," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 31-41.
    11. Vrignat, Pascal & Kratz, Frédéric & Avila, Manuel, 2022. "Sustainable manufacturing, maintenance policies, prognostics and health management: A literature review," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    12. Hu, Chao & Youn, Byeng D. & Wang, Pingfeng & Taek Yoon, Joung, 2012. "Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 120-135.
    13. Cipollini, Francesca & Oneto, Luca & Coraddu, Andrea & Murphy, Alan John & Anguita, Davide, 2018. "Condition-based maintenance of naval propulsion systems: Data analysis with minimal feedback," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 12-23.
    14. Jiang, Xiaomo & Yuan, Yong & Liu, Xian, 2013. "Bayesian inference method for stochastic damage accumulation modeling," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 126-138.
    15. Peng, Shizhe & Jiang, Wei & Huang, Wenpo & Luo, Qinglin, 2024. "The impact of gamma usage processes on preventive maintenance policies under two-dimensional warranty," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    16. Bjerga, Torbjørn & Aven, Terje & Zio, Enrico, 2014. "An illustration of the use of an approach for treating model uncertainties in risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 125(C), pages 46-53.
    17. Suyog S. Patil & Anand K. Bewoor & Ravinder Kumar & Mohammad Hossein Ahmadi & Mohsen Sharifpur & Seepana PraveenKumar, 2022. "Development of Optimized Maintenance Program for a Steam Boiler System Using Reliability-Centered Maintenance Approach," Sustainability, MDPI, vol. 14(16), pages 1-20, August.
    18. uit het Broek, Michiel A.J. & Teunter, Ruud H. & de Jonge, Bram & Veldman, Jasper, 2021. "Joint condition-based maintenance and condition-based production optimization," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    19. Estelle Deloux & Mitra Fouladirad & Christophe Bérenguer, 2016. "Health-and-usage-based maintenance policies for a partially observable deteriorating system," Journal of Risk and Reliability, , vol. 230(1), pages 120-129, February.
    20. Mugnaini, Marco & Addabbo, Tommaso & Fort, Ada & Elmi, Alessandro & Landi, Elia & Vignoli, Valerio, 2020. "Magnetic brakes material characterization under accelerated testing conditions," Reliability Engineering and System Safety, Elsevier, vol. 193(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:172:y:2018:i:c:p:36-44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.