IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v204y2020ics0951832020306207.html
   My bibliography  Save this article

A dependency bounds analysis method for reliability assessment of complex system with hybrid uncertainty

Author

Listed:
  • Song, Yufei
  • Mi, Jinhua
  • Cheng, Yuhua
  • Bai, Libing
  • Chen, Kai

Abstract

In reliability assessment, a difficulty is to handle a complex system with hybrid uncertainty (aleatory and epistemic uncertainty) and dependency problem. Probability-box is a general model to represent hybrid uncertainty. Arithmetic rules on the structure are mostly used between independent random variables. However, in practice, dependency problems are also common in reliability assessment. In addition, in most real applications, there is some prior information on the dependency of components, but the available information may be not enough to determine dependent parameters. The issue is named non-deterministic dependency problem in the paper. Affine arithmetic is hence used to produce dependent interval estimates. The arithmetic sometimes has a better effect than probability-box arithmetic (interval arithmetic) in dealing with dependency problem. Bayesian network is a commonly used model in reliability assessment. Under Bayesian network framework, this paper proposes a dependency bounds analysis method that combines affine arithmetic and probability-box method to handle hybrid uncertainty and non-deterministic dependency. For the sake of illustration, this method is applied to two real systems. To show the advantages of the proposed method, the proposed method is compared with the Frechet inequalities and 2-stage Monte Carlo method in the second case study.

Suggested Citation

  • Song, Yufei & Mi, Jinhua & Cheng, Yuhua & Bai, Libing & Chen, Kai, 2020. "A dependency bounds analysis method for reliability assessment of complex system with hybrid uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
  • Handle: RePEc:eee:reensy:v:204:y:2020:i:c:s0951832020306207
    DOI: 10.1016/j.ress.2020.107119
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832020306207
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.107119?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nannapaneni, Saideep & Mahadevan, Sankaran, 2016. "Reliability analysis under epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 155(C), pages 9-20.
    2. Eldred, M.S. & Swiler, L.P. & Tang, G., 2011. "Mixed aleatory-epistemic uncertainty quantification with stochastic expansions and optimization-based interval estimation," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 1092-1113.
    3. Simon, Christophe & Bicking, Frédérique, 2017. "Hybrid computation of uncertainty in reliability analysis with p-box and evidential networks," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 629-638.
    4. Feng, Geng & Patelli, Edoardo & Beer, Michael & Coolen, Frank P.A., 2016. "Imprecise system reliability and component importance based on survival signature," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 116-125.
    5. Tien, Iris & Der Kiureghian, Armen, 2016. "Algorithms for Bayesian network modeling and reliability assessment of infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 134-147.
    6. Wilson, Alyson G. & Huzurbazar, Aparna V., 2007. "Bayesian networks for multilevel system reliability," Reliability Engineering and System Safety, Elsevier, vol. 92(10), pages 1413-1420.
    7. Pan, Yue & Ou, Shenwei & Zhang, Limao & Zhang, Wenjing & Wu, Xianguo & Li, Heng, 2019. "Modeling risks in dependent systems: A Copula-Bayesian approach," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 416-431.
    8. Mi, Jinhua & Beer, Michael & Li, Yan-Feng & Broggi, Matteo & Cheng, Yuhua, 2020. "Reliability and importance analysis of uncertain system with common cause failures based on survival signature," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    9. Cai, Baoping & Liu, Yonghong & Fan, Qian & Zhang, Yunwei & Liu, Zengkai & Yu, Shilin & Ji, Renjie, 2014. "Multi-source information fusion based fault diagnosis of ground-source heat pump using Bayesian network," Applied Energy, Elsevier, vol. 114(C), pages 1-9.
    10. Mi, Jinhua & Li, Yan-Feng & Yang, Yuan-Jian & Peng, Weiwen & Huang, Hong-Zhong, 2016. "Reliability assessment of complex electromechanical systems under epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 1-15.
    11. Wang, Chaonan & Xing, Liudong & Levitin, Gregory, 2015. "Probabilistic common cause failures in phased-mission systems," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 53-60.
    12. Mi, Jinhua & Li, Yan-Feng & Peng, Weiwen & Huang, Hong-Zhong, 2018. "Reliability analysis of complex multi-state system with common cause failure based on evidential networks," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 71-81.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Xiaohu & Yao, Wen & Xu, Yingchun & Wang, Ning, 2024. "Algorithms for Bayesian network modeling and reliability inference of complex multistate systems with common cause failure," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    2. Xu, Jintao & Gui, Maolei & Ding, Rui & Dai, Tao & Zheng, Mengyan & Men, Xinhong & Meng, Fanpeng & Yu, Tao & Sui, Yang, 2023. "A new approach for dynamic reliability analysis of reactor protection system for HPR1000," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    3. Fan, Lin & Su, Huai & Wang, Wei & Zio, Enrico & Zhang, Li & Yang, Zhaoming & Peng, Shiliang & Yu, Weichao & Zuo, Lili & Zhang, Jinjun, 2022. "A systematic method for the optimization of gas supply reliability in natural gas pipeline network based on Bayesian networks and deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    4. Jia, Xiang & Guo, Bo, 2022. "Reliability analysis for complex system with multi-source data integration and multi-level data transmission," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    5. Ouyang, Linhan & Che, Yushuai & Park, Chanseok & Chen, Yuejian, 2024. "A novel active learning Gaussian process modeling-based method for time-dependent reliability analysis considering mixed variables," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    6. Mi, Jinhua & Lu, Ning & Li, Yan-Feng & Huang, Hong-Zhong & Bai, Libing, 2022. "An evidential network-based hierarchical method for system reliability analysis with common cause failures and mixed uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    7. Zhang, Kun & Chen, Ning & Zeng, Peng & Liu, Jian & Beer, Michael, 2022. "An efficient reliability analysis method for structures with hybrid time-dependent uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 228(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mi, Jinhua & Lu, Ning & Li, Yan-Feng & Huang, Hong-Zhong & Bai, Libing, 2022. "An evidential network-based hierarchical method for system reliability analysis with common cause failures and mixed uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    2. Salomon, Julian & Winnewisser, Niklas & Wei, Pengfei & Broggi, Matteo & Beer, Michael, 2021. "Efficient reliability analysis of complex systems in consideration of imprecision," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    3. Zheng, Xiaohu & Yao, Wen & Xu, Yingchun & Wang, Ning, 2024. "Algorithms for Bayesian network modeling and reliability inference of complex multistate systems with common cause failure," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    4. Mi, Jinhua & Beer, Michael & Li, Yan-Feng & Broggi, Matteo & Cheng, Yuhua, 2020. "Reliability and importance analysis of uncertain system with common cause failures based on survival signature," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    5. Jinhua Mi & Yuhua Cheng & Yufei Song & Libing Bai & Kai Chen, 2022. "Application of dynamic evidential networks in reliability analysis of complex systems with epistemic uncertainty and multiple life distributions," Annals of Operations Research, Springer, vol. 311(1), pages 311-333, April.
    6. Qian, Hua-Ming & Li, Yan-Feng & Huang, Hong-Zhong, 2021. "Time-variant system reliability analysis method for a small failure probability problem," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    7. Chemweno, Peter & Pintelon, Liliane & Muchiri, Peter Nganga & Van Horenbeek, Adriaan, 2018. "Risk assessment methodologies in maintenance decision making: A review of dependability modelling approaches," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 64-77.
    8. Zheng, Xiaohu & Yao, Wen & Xu, Yingchun & Chen, Xianqi, 2019. "Improved compression inference algorithm for reliability analysis of complex multistate satellite system based on multilevel Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 123-142.
    9. Li, Xiang-Yu & Xiong, Xiaoyan & Guo, Junyu & Huang, Hong-Zhong & Li, Xiaopeng, 2022. "Reliability assessment of non-repairable multi-state phased mission systems with backup missions," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    10. Zheng Liu & Xin Liu & Hong-Zhong Huang & Pingyu Zhu & Zhongwei Liang, 2022. "A new inherent reliability modeling and analysis method based on imprecise Dirichlet model for machine tool spindle," Annals of Operations Research, Springer, vol. 311(1), pages 295-310, April.
    11. Yuan-Jian Yang & Ya-Lan Xiong & Xin-Yin Zhang & Gui-Hua Wang & Bihai Zou, 2022. "Reliability analysis of continuous emission monitoring system with common cause failure based on fuzzy FMECA and Bayesian networks," Annals of Operations Research, Springer, vol. 311(1), pages 451-467, April.
    12. Sharp, Alanna & Andrade, Jose & Ruffini, Nicholas, 2019. "Design for reliability for the high reliability fuze," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 54-61.
    13. Moradi, Ramin & Cofre-Martel, Sergio & Lopez Droguett, Enrique & Modarres, Mohammad & Groth, Katrina M., 2022. "Integration of deep learning and Bayesian networks for condition and operation risk monitoring of complex engineering systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    14. Yingchun Xu & Xiaohu Zheng & Wen Yao & Ning Wang & Xiaoqian Chen, 2021. "A sequential multi-prior integration and updating method for complex multi-level system based on Bayesian melding method," Journal of Risk and Reliability, , vol. 235(5), pages 863-876, October.
    15. Zeng, Ying & Huang, Tudi & Li, Yan-Feng & Huang, Hong-Zhong, 2023. "Reliability modeling for power converter in satellite considering periodic phased mission," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    16. Huang, Tudi & Xiahou, Tangfan & Mi, Jinhua & Chen, Hong & Huang, Hong-Zhong & Liu, Yu, 2024. "Merging multi-level evidential observations for dynamic reliability assessment of hierarchical multi-state systems: A dynamic Bayesian network approach," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    17. Yong-Hua Li & Fu-Yu Zhao & Yue-Hua Gao & Peng-Peng Zhi, 2022. "Importance analysis of underframe connection system for the pantograph lower arm rod," Annals of Operations Research, Springer, vol. 311(1), pages 211-223, April.
    18. Junyu Guo & Hong-Zhong Huang & Weiwen Peng & Jie Zhou, 2019. "Bayesian information fusion for degradation analysis of deteriorating products with individual heterogeneity," Journal of Risk and Reliability, , vol. 233(4), pages 615-622, August.
    19. Ying-Kui Gu & Chao-Jun Fan & Ling-Qiang Liang & Jun Zhang, 2022. "Reliability calculation method based on the Copula function for mechanical systems with dependent failure," Annals of Operations Research, Springer, vol. 311(1), pages 99-116, April.
    20. Yan-Feng Li & Hong-Zhong Huang & Jinhua Mi & Weiwen Peng & Xiaomeng Han, 2022. "Reliability analysis of multi-state systems with common cause failures based on Bayesian network and fuzzy probability," Annals of Operations Research, Springer, vol. 311(1), pages 195-209, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:204:y:2020:i:c:s0951832020306207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.