IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v156y2016icp134-147.html
   My bibliography  Save this article

Algorithms for Bayesian network modeling and reliability assessment of infrastructure systems

Author

Listed:
  • Tien, Iris
  • Der Kiureghian, Armen

Abstract

Novel algorithms are developed to enable the modeling of large, complex infrastructure systems as Bayesian networks (BNs). These include a compression algorithm that significantly reduces the memory storage required to construct the BN model, and an updating algorithm that performs inference on compressed matrices. These algorithms address one of the major obstacles to widespread use of BNs for system reliability assessment, namely the exponentially increasing amount of information that needs to be stored as the number of components in the system increases. The proposed compression and inference algorithms are described and applied to example systems to investigate their performance compared to that of existing algorithms. Orders of magnitude savings in memory storage requirement are demonstrated using the new algorithms, enabling BN modeling and reliability analysis of larger infrastructure systems.

Suggested Citation

  • Tien, Iris & Der Kiureghian, Armen, 2016. "Algorithms for Bayesian network modeling and reliability assessment of infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 134-147.
  • Handle: RePEc:eee:reensy:v:156:y:2016:i:c:p:134-147
    DOI: 10.1016/j.ress.2016.07.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832016302988
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2016.07.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Salmeron, Antonio & Cano, Andres & Moral, Serafin, 2000. "Importance sampling in Bayesian networks using probability trees," Computational Statistics & Data Analysis, Elsevier, vol. 34(4), pages 387-413, October.
    2. Der Kiureghian, Armen & Song, Junho, 2008. "Multi-scale reliability analysis and updating of complex systems by use of linear programming," Reliability Engineering and System Safety, Elsevier, vol. 93(2), pages 288-297.
    3. Yeh, Wei-Chang, 2006. "A new algorithm for generating minimal cut sets in k-out-of-n networks," Reliability Engineering and System Safety, Elsevier, vol. 91(1), pages 36-43.
    4. Bensi, Michelle & Kiureghian, Armen Der & Straub, Daniel, 2013. "Efficient Bayesian network modeling of systems," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 200-213.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tong, Yanjie & Tien, Iris, 2019. "Analytical probability propagation method for reliability analysis of general complex networks," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 21-30.
    2. Moradi, Ramin & Cofre-Martel, Sergio & Lopez Droguett, Enrique & Modarres, Mohammad & Groth, Katrina M., 2022. "Integration of deep learning and Bayesian networks for condition and operation risk monitoring of complex engineering systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    3. Guo, Yongjin & Zhong, Mingjun & Gao, Chao & Wang, Hongdong & Liang, Xiaofeng & Yi, Hong, 2021. "A discrete-time Bayesian network approach for reliability analysis of dynamic systems with common cause failures," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    4. Huang, Tudi & Xiahou, Tangfan & Mi, Jinhua & Chen, Hong & Huang, Hong-Zhong & Liu, Yu, 2024. "Merging multi-level evidential observations for dynamic reliability assessment of hierarchical multi-state systems: A dynamic Bayesian network approach," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    5. Costa, Rodrigo & Haukaas, Terje & Chang, Stephanie E. & Dowlatabadi, Hadi, 2019. "Object-oriented model of the seismic vulnerability of the fuel distribution network in coastal British Columbia," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 11-23.
    6. Byun, Ji-Eun & Zwirglmaier, Kilian & Straub, Daniel & Song, Junho, 2019. "Matrix-based Bayesian Network for efficient memory storage and flexible inference," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 533-545.
    7. Zheng, Xiaohu & Yao, Wen & Xu, Yingchun & Chen, Xiaoqian, 2020. "Algorithms for Bayesian network modeling and reliability inference of complex multistate systems: Part I – Independent systems," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    8. Byun, Ji-Eun & Song, Junho, 2021. "A general framework of Bayesian network for system reliability analysis using junction tree," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    9. Gehl, Pierre & Cavalieri, Francesco & Franchin, Paolo, 2018. "Approximate Bayesian network formulation for the rapid loss assessment of real-world infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 80-93.
    10. Chemweno, Peter & Pintelon, Liliane & Muchiri, Peter Nganga & Van Horenbeek, Adriaan, 2018. "Risk assessment methodologies in maintenance decision making: A review of dependability modelling approaches," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 64-77.
    11. Song, Yufei & Mi, Jinhua & Cheng, Yuhua & Bai, Libing & Chen, Kai, 2020. "A dependency bounds analysis method for reliability assessment of complex system with hybrid uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    12. Byun, Ji-Eun & Song, Junho, 2020. "Efficient probabilistic multi-objective optimization of complex systems using matrix-based Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    13. Mrinal Kanti Sen & Subhrajit Dutta & Golam Kabir, 2021. "Flood Resilience of Housing Infrastructure Modeling and Quantification Using a Bayesian Belief Network," Sustainability, MDPI, vol. 13(3), pages 1-24, January.
    14. Maryam Garshasbi & Golam Kabir & Subhrajit Dutta, 2023. "Stormwater Infrastructure Resilience Assessment against Seismic Hazard Using Bayesian Belief Network," IJERPH, MDPI, vol. 20(16), pages 1-19, August.
    15. Zywiec, William J. & Mazzuchi, Thomas A. & Sarkani, Shahram, 2021. "Analysis of process criticality accident risk using a metamodel-driven Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    16. Zhang, Xiaoge & Mahadevan, Sankaran & Deng, Xinyang, 2017. "Reliability analysis with linguistic data: An evidential network approach," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 111-121.
    17. Bibartiu, Otto & Dürr, Frank & Rothermel, Kurt & Ottenwälder, Beate & Grau, Andreas, 2021. "Scalable k-out-of-n models for dependability analysis with Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    18. Suo, Weilan & Wang, Lin & Li, Jianping, 2021. "Probabilistic risk assessment for interdependent critical infrastructures: A scenario-driven dynamic stochastic model," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    19. Å arÅ«nienÄ—, Inga & MartiÅ¡auskas, Linas & KrikÅ¡tolaitis, RiÄ ardas & Augutis, Juozas & Setola, Roberto, 2024. "Risk assessment of critical infrastructures: A methodology based on criticality of infrastructure elements," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    20. Zheng, Xiaohu & Yao, Wen & Xu, Yingchun & Chen, Xianqi, 2019. "Improved compression inference algorithm for reliability analysis of complex multistate satellite system based on multilevel Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 123-142.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ebrahimi, Nader & Shehadeh, Mahmoud, 2015. "Assessing the reliability of components with micro- and nano-structures when they are part a multi-scale system," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 13-20.
    2. Rodríguez, Joanna & Lillo, Rosa E. & Ramírez-Cobo, Pepa, 2015. "Failure modeling of an electrical N-component framework by the non-stationary Markovian arrival process," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 126-133.
    3. Bensi, Michelle & Kiureghian, Armen Der & Straub, Daniel, 2013. "Efficient Bayesian network modeling of systems," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 200-213.
    4. Kim, Dong-Seok & Ok, Seung-Yong & Song, Junho & Koh, Hyun-Moo, 2013. "System reliability analysis using dominant failure modes identified by selective searching technique," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 316-331.
    5. Paglioni, Vincent P. & Groth, Katrina M., 2022. "Dependency definitions for quantitative human reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    6. Moradi, Ramin & Cofre-Martel, Sergio & Lopez Droguett, Enrique & Modarres, Mohammad & Groth, Katrina M., 2022. "Integration of deep learning and Bayesian networks for condition and operation risk monitoring of complex engineering systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    7. Yeh, Wei-Chang, 2020. "A new method for verifying d-MC candidates," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    8. Yeh, Wei-Chang, 2022. "Novel direct algorithm for computing simultaneous all-level reliability of multistate flow networks," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    9. Songtao Xue & Bo Wen & Rui Huang & Liyuan Huang & Tadanobu Sato & Liyu Xie & Hesheng Tang & Chunfeng Wan, 2018. "Parameter identification for structural health monitoring based on Monte Carlo method and likelihood estimate," International Journal of Distributed Sensor Networks, , vol. 14(7), pages 15501477187, July.
    10. DeJesus Segarra, Jonathan & Bensi, Michelle & Modarres, Mohammad, 2023. "Multi-unit seismic probabilistic risk assessment: A Bayesian network perspective," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    11. Byun, Ji-Eun & Zwirglmaier, Kilian & Straub, Daniel & Song, Junho, 2019. "Matrix-based Bayesian Network for efficient memory storage and flexible inference," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 533-545.
    12. Gehl, Pierre & Cavalieri, Francesco & Franchin, Paolo, 2018. "Approximate Bayesian network formulation for the rapid loss assessment of real-world infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 80-93.
    13. Wang, Zhiheng & Hawi, Philippe & Masri, Sami & Aitharaju, Venkat & Ghanem, Roger, 2023. "Stochastic multiscale modeling for quantifying statistical and model errors with application to composite materials," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    14. Byun, Ji-Eun & Song, Junho, 2021. "A general framework of Bayesian network for system reliability analysis using junction tree," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    15. Zohre Alipour & Mohammad Ali Saniee Monfared & Enrico Zio, 2014. "Comparing topological and reliability-based vulnerability analysis of Iran power transmission network," Journal of Risk and Reliability, , vol. 228(2), pages 139-151, April.
    16. Kang, Won-Hee & Kliese, Alyce, 2014. "A rapid reliability estimation method for directed acyclic lifeline networks with statistically dependent components," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 81-91.
    17. Byun, Ji-Eun & Song, Junho, 2020. "Efficient probabilistic multi-objective optimization of complex systems using matrix-based Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    18. Ghafory-Ashtiany, Mohsen & Arghavani, Mahban, 2022. "Physical performance of power grids against earthquakes: from framework to implementation," International Journal of Critical Infrastructure Protection, Elsevier, vol. 39(C).
    19. Mrinal Kanti Sen & Subhrajit Dutta & Golam Kabir, 2021. "Flood Resilience of Housing Infrastructure Modeling and Quantification Using a Bayesian Belief Network," Sustainability, MDPI, vol. 13(3), pages 1-24, January.
    20. Bibartiu, Otto & Dürr, Frank & Rothermel, Kurt & Ottenwälder, Beate & Grau, Andreas, 2021. "Scalable k-out-of-n models for dependability analysis with Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 210(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:156:y:2016:i:c:p:134-147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.