IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v241y2024ics0951832023005987.html
   My bibliography  Save this article

Probabilistic evaluation of the leak-tightness function of the nuclear containment structure subjected to internal pressure

Author

Listed:
  • Li, Xinbo
  • Gong, Jinxin

Abstract

This study evaluates the leak-tightness of the nuclear containment structure subjected to internal pressure from a probabilistic perspective. A global FE model of the containment and four refined sub-models in the critical region of the containment are established by the ABAQUS platform, and the leak-tightness of each critical region under overpressure conditions is investigated by the sub-model analysis technique. Based on reliability theory, an analytical method considering the spatial variability of the fracture strain of the steel liner is proposed to evaluate the functional failure probability of the containment. Combining the developed script and the proposed method, the fragility and the total failure probability of the containment corresponding to the functional failure mode are discussed in detail. Results indicate that the tearing sequence of the steel liner in the four critical regions of the containment is the equipment hatch, personnel airlock, emergency airlock, and truncated cone. Moreover, the concrete is severely cracked prior to the tearing of the steel liner, and thus the leak-tightness of the containment under severe accident loads is guaranteed by the steel liner. When the fracture strain of the steel liner in each critical region is completely correlated, the functional failure of the whole containment is controlled by the equipment hatch. As the correlation coefficient decreases, the mean value of the pressure capacity of the containment decreases, and the risk of containment leakage increases at the same internal pressure. When the spatial variability of the fracture strain of the steel liner is neglected, the total failure probability of the containment will be underestimated. In general, the containment investigated in this study can meet the probabilistic performance goal.

Suggested Citation

  • Li, Xinbo & Gong, Jinxin, 2024. "Probabilistic evaluation of the leak-tightness function of the nuclear containment structure subjected to internal pressure," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:reensy:v:241:y:2024:i:c:s0951832023005987
    DOI: 10.1016/j.ress.2023.109684
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023005987
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109684?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jin, Song & Gong, Jinxin, 2021. "Fragility analysis and probabilistic performance evaluation of nuclear containment structure subjected to internal pressure," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    2. Pang, Rui & Zai, Dezhi & Xu, Bin & Liu, Jun & Zhao, Chunfeng & Fan, Qunying & Chen, Yuting, 2023. "Stochastic dynamic and reliability analysis of AP1000 nuclear power plants via DPIM subjected to mainshock-aftershock sequences," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    3. Cho, Jaehyun & Lee, Sang Hun & Bang, Young Suk & Lee, Suwon & Park, Soo Yong, 2022. "Exhaustive simulation approach for severe accident risk in nuclear power plants: OPR-1000 full-power internal events," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    4. Kim, Man Cheol, 2023. "Rigorous derivation of interfacing system LOCA frequency formulas for probabilistic safety assessment of nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
    5. Gangolu, Jaswanth & Kumar, Ajay & Bhuyan, Kasturi & Sharma, Hrishikesh, 2022. "Probabilistic demand models and performance-based fragility estimates for concrete protective structures subjected to missile impact," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    6. Zhao, Yan-Gang & Qin, Miao-Jun & Lu, Zhao-Hui & Zhang, Long-Wen, 2021. "Seismic fragility analysis of nuclear power plants considering structural parameter uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    7. Francesco, Di Maio & Matteo, Fumagalli & Carlo, Guerini & Federico, Perotti & Enrico, Zio, 2021. "Time-dependent reliability analysis of the reactor building of a nuclear power plant for accounting of its aging and degradation," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Zhi & Tian, Aonan & Pan, Xiaolan & Ji, Duofa & Wang, Yong, 2024. "The damage-based fragility analysis and probabilistic safety assessment of containment under internal pressure," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    2. Bhuyan, Kasturi & Sharma, Hrishikesh, 2024. "Probabilistic capacity models and fragility estimate for NRC and UHSC panels subjected to contact blast," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    3. Kishore, Katchalla Bala & Gangolu, Jaswanth & Ramancha, Mukesh K. & Bhuyan, Kasturi & Sharma, Hrishikesh, 2022. "Performance-based probabilistic deflection capacity models and fragility estimation for reinforced concrete column and beam subjected to blast loading," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    4. Dhulipala, Somayajulu L.N. & Shields, Michael D. & Chakroborty, Promit & Jiang, Wen & Spencer, Benjamin W. & Hales, Jason D. & Labouré, Vincent M. & Prince, Zachary M. & Bolisetti, Chandrakanth & Che, 2022. "Reliability estimation of an advanced nuclear fuel using coupled active learning, multifidelity modeling, and subset simulation," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    5. Wang, Tiao & Li, Chunhe & Zheng, Jian-jun & Hackl, Jürgen & Luan, Yao & Ishida, Tetsuya & Medepalli, Satya, 2023. "Consideration of coupling of crack development and corrosion in assessing the reliability of reinforced concrete beams subjected to bending," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    6. Liu, Qiang & Huang, Delong & Zhang, Bin & Tang, Aiping & Xu, Xiuchen, 2024. "Developing a probability-based technique to improve the measurement of landslide vulnerability on regional roads," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    7. Bhuyan, Kasturi & Sharma, Hrishikesh, 2022. "Reliability analysis & performance-based code calibration for slabs/walls of protective structures subject to air blast loading," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    8. Lilli, Giordano & Sanavia, Matteo & Oboe, Roberto & Vianello, Chiara & Manzolaro, Mattia & De Ruvo, Pasquale Luca & Andrighetto, Alberto, 2024. "A semi-quantitative risk assessment of remote handling operations on the SPES Front-End based on HAZOP-LOPA," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    9. Kumar, Suman & Saxena, Sanchit & Sharma, Hrishikesh & Gangolu, Jaswanth & Prabhu, T. Ajeeth, 2023. "Development of design guidelines using probabilistic framework for the development of smart thickening fluid based ultra resistant adaptive kinematic soft human armor (SURAKSHA)," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    10. Sun, Xiaojun & Feng, Ding & Zhang, Qiang & Lin, Sheng, 2024. "Optimal siting of substations of traction power supply systems considering seismic risk," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    11. Li, Shen & Kim, Do Kyun & Benson, Simon, 2021. "A probabilistic approach to assess the computational uncertainty of ultimate strength of hull girders," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    12. Liu, Jiaxin & Yu, Deping & Yang, Taibo & Liu, Caixue & Wang, Guangjin & Liu, Xiaoming, 2023. "Discovering the causes for the change of the vibration characteristics of the core support barrel in PWR nuclear power plants: A combined investigation based on ex-core neutron noise analysis and nume," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    13. Cho, Jaehyun & Lee, Sang Hun & Bang, Young Suk & Lee, Suwon & Park, Soo Yong, 2022. "Exhaustive simulation approach for severe accident risk in nuclear power plants: OPR-1000 full-power internal events," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    14. Robinson, Allen C. & Drake, Richard R. & Swan, M. Scot & Bennett, Nichelle L. & Smith, Thomas M. & Hooper, Russell & Laity, George R., 2021. "A software environment for effective reliability management for pulsed power design," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    15. Li, Mingyang & Wang, Zequn, 2022. "LSTM-augmented deep networks for time-variant reliability assessment of dynamic systems," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    16. Hamza, Mostafa & Joslin, Nick & Lawson, Glen & McSweeney, Luke & Liao, Huafei & Vivanco, Alaina & Diaconeasa, Mihai A., 2024. "Identifying and quantifying a complete set of full-power initiating events during early design stages of high-temperature gas-cooled reactors," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    17. Zhang, Qiang & Zhao, Yan-Gang & Kolozvari, Kristijan & Xu, Lei, 2022. "Reliability analysis of reinforced concrete structure against progressive collapse," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    18. Dasgupta, Agnimitra & Johnson, Erik A., 2024. "REIN: Reliability Estimation via Importance sampling with Normalizing flows," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    19. Zheng, Xiaoyu & Tamaki, Hitoshi & Sugiyama, Tomoyuki & Maruyama, Yu, 2022. "Dynamic probabilistic risk assessment of nuclear power plants using multi-fidelity simulations," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    20. Yeh, Wei-Chang & Du, Chia-Ming & Tan, Shi-Yi & Forghani-elahabad, Majid, 2023. "Application of LSTM based on the BAT-MCS for binary-state network approximated time-dependent reliability problems," Reliability Engineering and System Safety, Elsevier, vol. 235(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:241:y:2024:i:c:s0951832023005987. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.