IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v234y2023ics0951832023001059.html
   My bibliography  Save this article

Discovering the causes for the change of the vibration characteristics of the core support barrel in PWR nuclear power plants: A combined investigation based on ex-core neutron noise analysis and numerical modal analysis

Author

Listed:
  • Liu, Jiaxin
  • Yu, Deping
  • Yang, Taibo
  • Liu, Caixue
  • Wang, Guangjin
  • Liu, Xiaoming

Abstract

As a key component of pressurized water reactor (PWR) nuclear power plants, the motion of the core support barrel (CSB) has a great impact on the safety of the nuclear reactor. However, the vibration characteristics of the CSB have not yet been fully investigated and may change due to the high doses of radiation and high temperature in the reactor. In this paper, the ex-core neutron noise signals of two PWR units throughout the multiple fuel cycles were analyzed and the vibration frequency of the CSB beam mode was found, for the first time, to drop with time during the operation of PWRs. Then, the statics analysis of the CSB was conducted to preliminarily identify the potential causes. For the further clarification of such vibration frequency drop phenomenon, a numerical assembly model of PWR reactor internals, including the CSB, hold-down ring (HDR), fuel assembly hold-down spring (FAHDS), etc., was proposed with consideration of the frictional contact and fluid-structure interaction for the modal analysis of the CSB. The results showed that the decrease of the FAHDS stiffness is the main cause for the drop of the vibration frequency of the CSB beam mode in real conditions.

Suggested Citation

  • Liu, Jiaxin & Yu, Deping & Yang, Taibo & Liu, Caixue & Wang, Guangjin & Liu, Xiaoming, 2023. "Discovering the causes for the change of the vibration characteristics of the core support barrel in PWR nuclear power plants: A combined investigation based on ex-core neutron noise analysis and nume," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
  • Handle: RePEc:eee:reensy:v:234:y:2023:i:c:s0951832023001059
    DOI: 10.1016/j.ress.2023.109190
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023001059
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109190?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jin, Song & Gong, Jinxin, 2021. "Fragility analysis and probabilistic performance evaluation of nuclear containment structure subjected to internal pressure," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    2. Ayoub, Ali & Stankovski, Andrej & Kröger, Wolfgang & Sornette, Didier, 2021. "The ETH Zurich curated nuclear events database: Layout, event classification, and analysis of contributing factors," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    3. Wang, Qiang & Li, Rongrong & He, Gang, 2018. "Research status of nuclear power: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 90-96.
    4. Marrel, Amandine & Chabridon, Vincent, 2021. "Statistical developments for target and conditional sensitivity analysis: Application on safety studies for nuclear reactor," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    5. Ayoub, Ali & Stankovski, Andrej & Kröger, Wolfgang & Sornette, Didier, 2021. "Precursors and startling lessons: Statistical analysis of 1250 events with safety significance from the civil nuclear sector," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    6. Zhou, Taotao & Modarres, Mohammad & Droguett, Enrique López, 2021. "Multi-unit nuclear power plant probabilistic risk assessment: A comprehensive survey," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    7. Hoseyni, Seyed Mojtaba & Di Maio, Francesco & Zio, Enrico, 2019. "Condition-based probabilistic safety assessment for maintenance decision making regarding a nuclear power plant steam generator undergoing multiple degradation mechanisms," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    8. Tolo, Silvia & Tian, Xiange & Bausch, Nils & Becerra, Victor & Santhosh, T.V. & Vinod, G. & Patelli, Edoardo, 2019. "Robust on-line diagnosis tool for the early accident detection in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 110-119.
    9. Xing, Jinduo & Zeng, Zhiguo & Zio, Enrico, 2020. "Joint optimization of safety barriers for enhancing business continuity of nuclear power plants against steam generator tube ruptures accidents," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al-Douri, Ahmad & Levine, Camille S. & Groth, Katrina M., 2023. "Identifying human failure events (HFEs) for external hazard probabilistic risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    2. Dhulipala, Somayajulu L.N. & Shields, Michael D. & Chakroborty, Promit & Jiang, Wen & Spencer, Benjamin W. & Hales, Jason D. & Labouré, Vincent M. & Prince, Zachary M. & Bolisetti, Chandrakanth & Che, 2022. "Reliability estimation of an advanced nuclear fuel using coupled active learning, multifidelity modeling, and subset simulation," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    3. Waqar Muhammad Ashraf & Ghulam Moeen Uddin & Syed Muhammad Arafat & Sher Afghan & Ahmad Hassan Kamal & Muhammad Asim & Muhammad Haider Khan & Muhammad Waqas Rafique & Uwe Naumann & Sajawal Gul Niazi &, 2020. "Optimization of a 660 MW e Supercritical Power Plant Performance—A Case of Industry 4.0 in the Data-Driven Operational Management Part 1. Thermal Efficiency," Energies, MDPI, vol. 13(21), pages 1-33, October.
    4. Ayoub, Ali & Stankovski, Andrej & Kröger, Wolfgang & Sornette, Didier, 2021. "Precursors and startling lessons: Statistical analysis of 1250 events with safety significance from the civil nuclear sector," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    5. Wu, Jingyao & Zhao, Zhibin & Sun, Chuang & Yan, Ruqiang & Chen, Xuefeng, 2021. "Learning from Class-imbalanced Data with a Model-Agnostic Framework for Machine Intelligent Diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    6. Yoon, Jae Young & Kim, Dong-San, 2022. "Estimating the adverse effects of inter-unit radioactive release on operator actions at a multi-unit site," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    7. Yoo, Heejong & Heo, Gyunyoung, 2023. "Analysis of site operating state contributions for multi-unit PSA with Korean NPP Sites," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    8. Lilli, Giordano & Sanavia, Matteo & Oboe, Roberto & Vianello, Chiara & Manzolaro, Mattia & De Ruvo, Pasquale Luca & Andrighetto, Alberto, 2024. "A semi-quantitative risk assessment of remote handling operations on the SPES Front-End based on HAZOP-LOPA," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    9. Li, Xinbo & Gong, Jinxin, 2024. "Probabilistic evaluation of the leak-tightness function of the nuclear containment structure subjected to internal pressure," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    10. Bhuyan, Kasturi & Sharma, Hrishikesh, 2024. "Probabilistic capacity models and fragility estimate for NRC and UHSC panels subjected to contact blast," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    11. Jang, Seunghyun & Kim, Yongjin & Jae, Moosung, 2021. "A site risk assessment for internal events: A case study," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    12. Vincenzo Destino & Nicola Pedroni & Roberto Bonifetto & Francesco Di Maio & Laura Savoldi & Enrico Zio, 2021. "Metamodeling and On-Line Clustering for Loss-of-Flow Accident Precursors Identification in a Superconducting Magnet Cryogenic Cooling Circuit," Energies, MDPI, vol. 14(17), pages 1-37, September.
    13. Li, Ruopu & Arzaghi, Ehsan & Abbassi, Rouzbeh & Chen, Diyi & Li, Chunhao & Li, Huanhuan & Xu, Beibei, 2020. "Dynamic maintenance planning of a hydro-turbine in operational life cycle," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    14. Ma, Yuan-Zhuo & Jin, Xiang-Xiang & Zhao, Xiang & Li, Hong-Shuang & Zhao, Zhen-Zhou & Xu, Chang, 2024. "Reliability-oriented global sensitivity analysis using subset simulation and space partition," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    15. Sergey Kashurnikov & Valeriy Prasolov & Vladimir Gorbanyov & Rodion Rogulin, 2020. "Nuclear Power Production: The Future or the Past?," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 131-141.
    16. Martínez-Galán Fernández, Pablo & Guillén López, Antonio J. & Márquez, Adolfo Crespo & Gomez Fernández, Juan Fco. & Marcos, Jose Antonio, 2022. "Dynamic Risk Assessment for CBM-based adaptation of maintenance planning," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    17. Alsulieman, Abdullah & Ge, Xihe & Zeng, Zhiguo & Butenko, Sergiy & Khan, Faisal & El-Halwagi, Mahmoud, 2024. "Dynamic risk analysis of evolving scenarios in oil and gas separator," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    18. Pang, Rui & Zai, Dezhi & Xu, Bin & Liu, Jun & Zhao, Chunfeng & Fan, Qunying & Chen, Yuting, 2023. "Stochastic dynamic and reliability analysis of AP1000 nuclear power plants via DPIM subjected to mainshock-aftershock sequences," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    19. Chadha, Mayank & Ramancha, Mukesh K. & Vega, Manuel A. & Conte, Joel P. & Todd, Michael D., 2023. "The modeling of risk perception in the use of structural health monitoring information for optimal maintenance decisions," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    20. Ayoub, Ali & Stankovski, Andrej & Kröger, Wolfgang & Sornette, Didier, 2021. "The ETH Zurich curated nuclear events database: Layout, event classification, and analysis of contributing factors," Reliability Engineering and System Safety, Elsevier, vol. 213(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:234:y:2023:i:c:s0951832023001059. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.