IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v251y2024ics0951832024004010.html
   My bibliography  Save this article

Bayesian sparse grid (BSG) approach for information salvage in reliability assessment of deteriorating structures

Author

Listed:
  • Li, Long
  • Xu, Jun
  • Kuok, Sin-Chi

Abstract

Assessing the reliability of deteriorating structures remains a challenging task. Traditional methods involve continuous reliability simulations at each time step, which leads to expensive computational expenses. To improve the computational efficiency, a Bayesian Sparse Grid (BSG) approach is proposed in this study. It effectively salvages information to estimate reliability analysis. The proposed BSG approach consists of the initial and operational stage. In the initial stage, integration samples of each dimension are generated. For the operational stage, these samples are dynamically weighted using Bayesian inference combined with the Smolyak algorithm at each time instant. By updating the weights and salvaging the generated samples, the proposed approach allows a cost-effective reconstruction of structural reliability without extra sampling. The efficacy of the proposed approach is demonstrated by numerical examples that encompass both explicit and implicit time-variant performance functions.

Suggested Citation

  • Li, Long & Xu, Jun & Kuok, Sin-Chi, 2024. "Bayesian sparse grid (BSG) approach for information salvage in reliability assessment of deteriorating structures," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
  • Handle: RePEc:eee:reensy:v:251:y:2024:i:c:s0951832024004010
    DOI: 10.1016/j.ress.2024.110329
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024004010
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110329?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heiss, Florian & Winschel, Viktor, 2008. "Likelihood approximation by numerical integration on sparse grids," Journal of Econometrics, Elsevier, vol. 144(1), pages 62-80, May.
    2. Fernández, Juan & Chiachío, Juan & Barros, José & Chiachío, Manuel & Kulkarni, Chetan S., 2024. "Physics-guided recurrent neural network trained with approximate Bayesian computation: A case study on structural response prognostics," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    3. Zhou, Tong & Peng, Yongbo, 2020. "Adaptive Bayesian quadrature based statistical moments estimation for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    4. Song, Jingwen & Cui, Yifan & Wei, Pengfei & Valdebenito, Marcos A. & Zhang, Weihong, 2024. "Constrained Bayesian optimization algorithms for estimating design points in structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    5. Zhang, Yang & Xu, Jun & Beer, Michael, 2023. "A single-loop time-variant reliability evaluation via a decoupling strategy and probability distribution reconstruction," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    6. Dang, Chao & Beer, Michael, 2024. "Semi-Bayesian active learning quadrature for estimating extremely low failure probabilities," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    7. Cheng, Kai & Lu, Zhenzhou, 2021. "Adaptive Bayesian support vector regression model for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    8. Dang, Chao & Wei, Pengfei & Faes, Matthias G.R. & Valdebenito, Marcos A. & Beer, Michael, 2022. "Parallel adaptive Bayesian quadrature for rare event estimation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    9. Choe, Do-Eun & Gardoni, Paolo & Rosowsky, David & Haukaas, Terje, 2008. "Probabilistic capacity models and seismic fragility estimates for RC columns subject to corrosion," Reliability Engineering and System Safety, Elsevier, vol. 93(3), pages 383-393.
    10. Dang, Chao & Valdebenito, Marcos A. & Wei, Pengfei & Song, Jingwen & Beer, Michael, 2024. "Bayesian active learning line sampling with log-normal process for rare-event probability estimation," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    11. Jerez, D.J. & Jensen, H.A. & Beer, M., 2022. "An effective implementation of reliability methods for Bayesian model updating of structural dynamic models with multiple uncertain parameters," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dang, Chao & Wei, Pengfei & Faes, Matthias G.R. & Valdebenito, Marcos A. & Beer, Michael, 2022. "Parallel adaptive Bayesian quadrature for rare event estimation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    2. Luo, Changqi & Zhu, Shun-Peng & Keshtegar, Behrooz & Niu, Xiaopeng & Taylan, Osman, 2023. "An enhanced uniform simulation approach coupled with SVR for efficient structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    3. Zhou, Tong & Peng, Yongbo, 2022. "Ensemble of metamodels-assisted probability density evolution method for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    4. Wang, Zeyu & Shafieezadeh, Abdollah, 2023. "Bayesian updating with adaptive, uncertainty-informed subset simulations: High-fidelity updating with multiple observations," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    5. Zhang, Bohua & Wang, Weigang & Lei, Haoran & Hu, Xiancun & Li, Chun-Qing, 2024. "An improved analytical solution to outcrossing rate for scalar nonstationary and non-gaussian processes," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    6. Xin, Fukang & Wang, Pan & Wang, Qirui & Li, Lei & Cheng, Lei & Lei, Huajin & Ma, Fangyun, 2024. "Parallel adaptive ensemble of metamodels combined with hypersphere sampling for rare failure events," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    7. Dang, Chao & Beer, Michael, 2024. "Semi-Bayesian active learning quadrature for estimating extremely low failure probabilities," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    8. Zhou, Tong & Peng, Yongbo, 2022. "Reliability analysis using adaptive Polynomial-Chaos Kriging and probability density evolution method," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    9. Zhou, Tong & Guo, Tong & Dong, You & Yang, Fan & Frangopol, Dan M., 2024. "Look-ahead active learning reliability analysis based on stepwise margin reduction," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    10. Wei, Pengfei & Zheng, Yu & Fu, Jiangfeng & Xu, Yuannan & Gao, Weikai, 2023. "An expected integrated error reduction function for accelerating Bayesian active learning of failure probability," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    11. S. Bogan Aruoba & Pablo Cuba-Borda & Kenji Higa-Flores & Frank Schorfheide & Sergio Villalvazo, 2021. "Piecewise-Linear Approximations and Filtering for DSGE Models with Occasionally Binding Constraints," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 41, pages 96-120, July.
    12. Chunyan, Ling & Jingzhe, Lei & Way, Kuo, 2022. "Bayesian support vector machine for optimal reliability design of modular systems," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    13. Wang, Tiao & Li, Chunhe & Zheng, Jian-jun & Hackl, Jürgen & Luan, Yao & Ishida, Tetsuya & Medepalli, Satya, 2023. "Consideration of coupling of crack development and corrosion in assessing the reliability of reinforced concrete beams subjected to bending," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    14. Li, Jin-Yang & Lu, Jubin & Zhou, Hao, 2023. "Reliability analysis of structures with inerter-based isolation layer under stochastic seismic excitations," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    15. Florian Heiss, 2016. "Discrete Choice Methods with Simulation," Econometric Reviews, Taylor & Francis Journals, vol. 35(4), pages 688-692, April.
    16. Sándor Zsolt, 2013. "Monte Carlo Simulation in Random Coefficient Logit Models Involving Large Sums," Acta Universitatis Sapientiae, Economics and Business, Sciendo, vol. 1(1), pages 85-108, July.
    17. Chen, Jun-Yu & Feng, Yun-Wen & Teng, Da & Lu, Cheng & Fei, Cheng-Wei, 2022. "Support vector machine-based similarity selection method for structural transient reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    18. Matthew Gentzkow & Jesse M. Shapiro & Michael Sinkinson, 2014. "Competition and Ideological Diversity: Historical Evidence from US Newspapers," American Economic Review, American Economic Association, vol. 104(10), pages 3073-3114, October.
    19. Vishwanath, B Sharanbaswa & Banerjee, Swagata, 2023. "Considering uncertainty in corrosion process to estimate life-cycle seismic vulnerability and risk of aging bridge piers," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    20. Franco Peracchi & Claudio Rossetti, 2022. "A nonlinear dynamic factor model of health and medical treatment," Health Economics, John Wiley & Sons, Ltd., vol. 31(6), pages 1046-1066, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:251:y:2024:i:c:s0951832024004010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.