IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v229y2023ics0951832022004434.html
   My bibliography  Save this article

IE-AK: A novel adaptive sampling strategy based on information entropy for Kriging in metamodel-based reliability analysis

Author

Listed:
  • Zhou, Jin
  • Li, Jie

Abstract

This article focuses on the adaptive Kriging metamodel-based reliability analysis for reducing a sequential number of calls of the complex original functions. To avoid the repetitive and tedious deterministic response analysis with stochastic simulation method (including Monte Carlo Simulation and its various improvement, such as importance sampling, subset simulation) in reliability analysis, herein a novel sequential sampling strategy related to Kriging metamodel is proposed, which is implemented based on information entropy theory. In addition, the generalized F-discrepancy method is simultaneously quoted to further optimize the candidate pool to improve the effectiveness of the training metamodel. Finally, a new structural reliability analysis method is proposed, which continuously reduces the number of deterministic analysis of structures without sacrificing accuracy. To highlight the applicability of the method and verify its accuracy and effectiveness, a series of typical examples are tested and compared, including highly nonlinear limit state functions, high-dimension performance function with analytic expressions and dynamic reliability analysis of nonlinear engineering structures subject to seismic excitation with implicit performance function. Numerical results show that significant computational savings and desired accuracy can be achieved when dealing with different reliability analysis cases.

Suggested Citation

  • Zhou, Jin & Li, Jie, 2023. "IE-AK: A novel adaptive sampling strategy based on information entropy for Kriging in metamodel-based reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
  • Handle: RePEc:eee:reensy:v:229:y:2023:i:c:s0951832022004434
    DOI: 10.1016/j.ress.2022.108824
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022004434
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108824?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Zhili & Wang, Jian & Li, Rui & Tong, Cao, 2017. "LIF: A new Kriging based learning function and its application to structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 152-165.
    2. Zhang, Xufang & Wang, Lei & Sørensen, John Dalsgaard, 2019. "REIF: A novel active-learning function toward adaptive Kriging surrogate models for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 440-454.
    3. Shi, Yan & Lu, Zhenzhou & He, Ruyang & Zhou, Yicheng & Chen, Siyu, 2020. "A novel learning function based on Kriging for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    4. Fauriat, W. & Gayton, N., 2014. "AK-SYS: An adaptation of the AK-MCS method for system reliability," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 137-144.
    5. Cadini, F. & Santos, F. & Zio, E., 2014. "An improved adaptive kriging-based importance technique for sampling multiple failure regions of low probability," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 109-117.
    6. Zhang, Jinhao & Xiao, Mi & Gao, Liang, 2019. "An active learning reliability method combining Kriging constructed with exploration and exploitation of failure region and subset simulation," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 90-102.
    7. Zhou, Tong & Peng, Yongbo, 2022. "Reliability analysis using adaptive Polynomial-Chaos Kriging and probability density evolution method," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    8. Roy, Atin & Chakraborty, Subrata, 2020. "Support vector regression based metamodel by sequential adaptive sampling for reliability analysis of structures," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    9. Wang, Jian & Sun, Zhili & Cao, Runan, 2021. "An efficient and robust Kriging-based method for system reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    10. Wen, Zhixun & Pei, Haiqing & Liu, Hai & Yue, Zhufeng, 2016. "A Sequential Kriging reliability analysis method with characteristics of adaptive sampling regions and parallelizability," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 170-179.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Jin-Yang & Lu, Jubin & Zhou, Hao, 2023. "Reliability analysis of structures with inerter-based isolation layer under stochastic seismic excitations," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    2. Ding, Jiayi & Zhou, Jianfang & Cai, Wei, 2023. "An efficient variable selection-based Kriging model method for the reliability analysis of slopes with spatially variable soils," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    3. Luo, Changqi & Zhu, Shun-Peng & Keshtegar, Behrooz & Niu, Xiaopeng & Taylan, Osman, 2023. "An enhanced uniform simulation approach coupled with SVR for efficient structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    4. Wang, Lei & Hu, Zhuo & Dang, Chao & Beer, Michael, 2024. "Refined parallel adaptive Bayesian quadrature for estimating small failure probabilities," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    5. Bakeer, Tammam, 2023. "General partial safety factor theory for the assessment of the reliability of nonlinear structural systems," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    6. Bao, Yuequan & Sun, Huabin & Guan, Xiaoshu & Tian, Yuxuan, 2024. "An active learning method using deep adversarial autoencoder-based sufficient dimension reduction neural network for high-dimensional reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    7. Yuan, Kai & Sui, Xi & Zhang, Shijie & Xiao, Ning-cong & Hu, Jinghan, 2024. "AK-SYS-IE: A novel adaptive Kriging-based method for system reliability assessment combining information entropy," Reliability Engineering and System Safety, Elsevier, vol. 246(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Wenxiong & Geng, Rong & Chen, Suiyin, 2024. "CSP-free adaptive Kriging surrogate model method for reliability analysis with small failure probability," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    2. Wang, Yanzhong & Xie, Bin & E, Shiyuan, 2022. "Adaptive relevance vector machine combined with Markov-chain-based importance sampling for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    3. Wang, Jinsheng & Xu, Guoji & Li, Yongle & Kareem, Ahsan, 2022. "AKSE: A novel adaptive Kriging method combining sampling region scheme and error-based stopping criterion for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    4. Saraygord Afshari, Sajad & Enayatollahi, Fatemeh & Xu, Xiangyang & Liang, Xihui, 2022. "Machine learning-based methods in structural reliability analysis: A review," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    5. Song, Kunling & Zhang, Yugang & Shen, Linjie & Zhao, Qingyan & Song, Bifeng, 2021. "A failure boundary exploration and exploitation framework combining adaptive Kriging model and sample space partitioning strategy for efficient reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    6. Zhang, Jinhao & Gao, Liang & Xiao, Mi, 2020. "A composite-projection-outline-based approximation method for system reliability analysis with hybrid uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    7. Teixeira, Rui & Nogal, Maria & O’Connor, Alan & Martinez-Pastor, Beatriz, 2020. "Reliability assessment with density scanned adaptive Kriging," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    8. Chen, Weidong & Xu, Chunlong & Shi, Yaqin & Ma, Jingxin & Lu, Shengzhuo, 2019. "A hybrid Kriging-based reliability method for small failure probabilities," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 31-41.
    9. Chen, Jiahui & Chen, Zhicheng & Xu, Yang & Li, Hui, 2021. "Efficient reliability analysis combining kriging and subset simulation with two-stage convergence criterion," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    10. Shi, Yan & Lu, Zhenzhou & He, Ruyang & Zhou, Yicheng & Chen, Siyu, 2020. "A novel learning function based on Kriging for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    11. Wang, Jinsheng & Xu, Guoji & Yuan, Peng & Li, Yongle & Kareem, Ahsan, 2024. "An efficient and versatile Kriging-based active learning method for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    12. Wang, Zeyu & Shafieezadeh, Abdollah, 2020. "Real-time high-fidelity reliability updating with equality information using adaptive Kriging," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    13. Jian, Wang & Zhili, Sun & Qiang, Yang & Rui, Li, 2017. "Two accuracy measures of the Kriging model for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 494-505.
    14. Zhang, Yu & Dong, You & Xu, Jun, 2023. "An accelerated active learning Kriging model with the distance-based subdomain and a new stopping criterion for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    15. Li, Peiping & Wang, Yu, 2022. "An active learning reliability analysis method using adaptive Bayesian compressive sensing and Monte Carlo simulation (ABCS-MCS)," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    16. Ni, Pinghe & Li, Jun & Hao, Hong & Yan, Weimin & Du, Xiuli & Zhou, Hongyuan, 2020. "Reliability analysis and design optimization of nonlinear structures," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    17. Zhang, Xufang & Wang, Lei & Sørensen, John Dalsgaard, 2019. "REIF: A novel active-learning function toward adaptive Kriging surrogate models for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 440-454.
    18. Yi, Jiaxiang & Cheng, Yuansheng & Liu, Jun, 2022. "A novel fidelity selection strategy-guided multifidelity kriging algorithm for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    19. Wang, Jian & Sun, Zhili & Cao, Runan, 2021. "An efficient and robust Kriging-based method for system reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    20. Zhu, Xianming & Lu, Zhenzhou & Yun, Wanying, 2020. "An efficient method for estimating failure probability of the structure with multiple implicit failure domains by combining Meta-IS with IS-AK," Reliability Engineering and System Safety, Elsevier, vol. 193(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:229:y:2023:i:c:s0951832022004434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.