IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v241y2024ics0951832023005690.html
   My bibliography  Save this article

Integration of functional resonance analysis method and reinforcement learning for updating and optimizing emergency procedures in variable environments

Author

Listed:
  • Liu, Xuan
  • Meng, Huixing
  • An, Xu
  • Xing, Jinduo

Abstract

Blowout accidents are prone to generate personal casualties, property losses, and even environmental disasters. To alleviate the consequences of accidents, it is essential to conduct effective emergency operations and update emergency schemes when necessary. In the update of the emergency plan, how to effectively optimize the allocation of resources is an open question. To deal with above difficulties, we propose a hybrid methodology by integrating the functional resonance analysis method (FRAM) and reinforcement learning (RL) for updating and optimizing emergency schemes. In the proposed methodology, FRAM is utilized to model the emergency response process based on function, variability, and coupling. Since the environment of emergency operations usually changes, RL is introduced to update emergency schemes that are constructed by FRAM. The selection of reward value by the agent reflects the variability of functional nodes in the FRAM model. To optimize emergency schemes, the interval analytic hierarchy process is integrated with multi-objective decision-making to analyze the duration, cost, and exposure risk of emergency operations. The installation of a capping stack, an emergency technique for deepwater blowout accidents, is employed to illustrate the applicability of the methodology. The results show that the proposed model is beneficial to determine emergency actions adapted to condition or scenario change in accidents.

Suggested Citation

  • Liu, Xuan & Meng, Huixing & An, Xu & Xing, Jinduo, 2024. "Integration of functional resonance analysis method and reinforcement learning for updating and optimizing emergency procedures in variable environments," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:reensy:v:241:y:2024:i:c:s0951832023005690
    DOI: 10.1016/j.ress.2023.109655
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023005690
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109655?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meng, Xiangkun & Li, Xinhong & Wang, Weigang & Song, Guozheng & Chen, Guoming & Zhu, Jingyu, 2021. "A novel methodology to analyze accident path in deepwater drilling operation considering uncertain information," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    2. Guo, Yunlong & Jin, Yongxing & Hu, Shenping & Yang, Zaili & Xi, Yongtao & Han, Bing, 2023. "Risk evolution analysis of ship pilotage operation by an integrated model of FRAM and DBN," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    3. Rahman, Md Samsur & Colbourne, Bruce & Khan, Faisal, 2021. "Risk-Based Cost Benefit Analysis of Offshore Resource Centre to Support Remote Offshore Operations in Harsh Environment," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    4. Meng, Huixing & Liu, Xuan & Xing, Jinduo & Zio, Enrico, 2022. "A method for economic evaluation of predictive maintenance technologies by integrating system dynamics and evolutionary game modelling," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    5. Cai, Baoping & Zhang, Yanping & Wang, Haifeng & Liu, Yonghong & Ji, Renjie & Gao, Chuntan & Kong, Xiangdi & Liu, Jing, 2021. "Resilience evaluation methodology of engineering systems with dynamic-Bayesian-network-based degradation and maintenance," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    6. Mohammadi, Reza & He, Qing, 2022. "A deep reinforcement learning approach for rail renewal and maintenance planning," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    7. Ding, Zhetong & Chen, Chunyu & Cui, Mingjian & Bi, Wenjun & Chen, Yang & Li, Fangxing, 2021. "Dynamic game-based defensive primary frequency control system considering intelligent attackers," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    8. Liu, Zengkai & Ma, Qiang & Cai, Baoping & Shi, Xuewei & Zheng, Chao & Liu, Yonghong, 2022. "Risk coupling analysis of subsea blowout accidents based on dynamic Bayesian network and NK model," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    9. Fan, Lin & Su, Huai & Wang, Wei & Zio, Enrico & Zhang, Li & Yang, Zhaoming & Peng, Shiliang & Yu, Weichao & Zuo, Lili & Zhang, Jinjun, 2022. "A systematic method for the optimization of gas supply reliability in natural gas pipeline network based on Bayesian networks and deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    10. Majeed Abimbola & Faisal Khan, 2018. "Dynamic Blowout Risk Analysis Using Loss Functions," Risk Analysis, John Wiley & Sons, vol. 38(2), pages 255-271, February.
    11. Guan, Xiaoshu & Xiang, Zhengliang & Bao, Yuequan & Li, Hui, 2022. "Structural dominant failure modes searching method based on deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patriarca, Riccardo & Simone, Francesco & Artime, Oriol & Saurin, Tarcisio Abreu & Fogliatto, Flávio Sanson, 2024. "Conceptualization of a functional random walker for the analysis of socio-technical systems," Reliability Engineering and System Safety, Elsevier, vol. 251(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Rui & Zhu, Jingyu & Chen, Guoming & Tian, Zhigang, 2022. "A real-time probabilistic risk assessment method for the petrochemical industry based on data monitoring," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    2. Qiu, Na & Liu, Xiuquan & Li, Yanwei & Hu, Pengji & Chang, Yuanjiang & Chen, Guoming & Meng, Huixing, 2024. "Dynamic catastrophe analysis of deepwater mooring platform/riser/wellhead coupled system under ISW," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    3. Morato, P.G. & Andriotis, C.P. & Papakonstantinou, K.G. & Rigo, P., 2023. "Inference and dynamic decision-making for deteriorating systems with probabilistic dependencies through Bayesian networks and deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    4. Yan, Dongyang & Li, Keping & Zhu, Qiaozhen & Liu, Yanyan, 2023. "A railway accident prevention method based on reinforcement learning – Active preventive strategy by multi-modal data," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    5. Saleh, Ali & Chiachío, Manuel & Salas, Juan Fernández & Kolios, Athanasios, 2023. "Self-adaptive optimized maintenance of offshore wind turbines by intelligent Petri nets," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    6. Najafi, Seyedvahid & Lee, Chi-Guhn, 2023. "A deep reinforcement learning approach for repair-based maintenance of multi-unit systems using proportional hazards model," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    7. Fan, Cunlong & Montewka, Jakub & Bolbot, Victor & Zhang, Yang & Qiu, Yuhui & Hu, Shenping, 2024. "Towards an analysis framework for operational risk coupling mode: A case from MASS navigating in restricted waters," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    8. Yang, Bofan & Zhang, Lin & Zhang, Bo & Xiang, Yang & An, Lei & Wang, Wenfeng, 2022. "Complex equipment system resilience: Composition, measurement and element analysis," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    9. Ziegler Haselein, Bruno & da Silva, Jonny Carlos & Hooey, Becky L., 2024. "Multiple machine learning modeling on near mid-air collisions: An approach towards probabilistic reasoning," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    10. Liu, Changyu & Song, Yadong & Wang, Wei & Shi, Xunpeng, 2023. "The governance of manufacturers’ greenwashing behaviors: A tripartite evolutionary game analysis of electric vehicles," Applied Energy, Elsevier, vol. 333(C).
    11. Liang, Zhenglin & Li, Yan-Fu, 2023. "Holistic Resilience and Reliability Measures for Cellular Telecommunication Networks," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    12. Badrsimaei, Hamed & Hooshmand, Rahmat-Allah & Nobakhtian, Soghra, 2023. "Observable placement of phasor measurement units for defense against data integrity attacks in real time power markets," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    13. Wang, Lei & Liu, Qing & Dong, Shiyu & Guedes Soares, C., 2022. "Selection of countermeasure portfolio for shipping safety with consideration of investment risk aversion," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    14. Bhardwaj, U. & Teixeira, A.P. & Guedes Soares, C., 2022. "Casualty analysis methodology and taxonomy for FPSO accident analysis," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    15. Dui, Hongyan & Zhu, Yawen & Tao, Junyong, 2024. "Multi-phased resilience methodology of urban sewage treatment network based on the phase and node recovery importance in IoT," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    16. Liu, Zhichen & Li, Ying & Zhang, Zhaoyi & Yu, Wenbo, 2022. "A new evacuation accessibility analysis approach based on spatial information," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    17. Tao, Haohan & Jia, Peng & Wang, Xiangyu & Wang, Liquan, 2024. "Reliability analysis of subsea control module based on dynamic Bayesian network and digital twin," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    18. Diao, Xiaoxu & Zhao, Yunfei & Smidts, Carol & Vaddi, Pavan Kumar & Li, Ruixuan & Lei, Hangtian & Chakhchoukh, Yacine & Johnson, Brian & Blanc, Katya Le, 2024. "Dynamic probabilistic risk assessment for electric grid cybersecurity," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    19. Hongyan Dui & Zhe Xu & Liwei Chen & Liudong Xing & Bin Liu, 2022. "Data-Driven Maintenance Priority and Resilience Evaluation of Performance Loss in a Main Coolant System," Mathematics, MDPI, vol. 10(4), pages 1-18, February.
    20. Zeng, Huibin & Shao, Bilin & Dai, Hongbin & Yan, Yichuan & Tian, Ning, 2023. "Natural gas demand response strategy considering user satisfaction and load volatility under dynamic pricing," Energy, Elsevier, vol. 277(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:241:y:2024:i:c:s0951832023005690. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.