IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v253y2025ics0951832024006367.html
   My bibliography  Save this article

Dynamic risk assessment for process operational safety based on reachability analysis

Author

Listed:
  • Wang, Yuchen
  • Ji, Zuzhen
  • Cao, Yi
  • Yang, Shuang-Hua

Abstract

The successful implementation of chemical production systems necessitates an effective mechanism for quantitatively assessing dynamic risk. Current methods predominantly evaluate the entire industrial process – from basic operations to the safety protection layer – and typically focus on the impact of fixed deviations in process parameters on the development of abnormal conditions. However, the cumulative impact of process disturbances on dynamic risk deserves attention, particularly in the context of abnormal operating conditions. To overcome the limitations of existing methodologies, this paper introduces a suite of novel dynamic operational risk indices based on reachability analysis, encapsulated within a comprehensive framework that includes identifying safety critical variables and quantifying uncertainties in set-form. The efficacy of the proposed method is demonstrated through applications to a tank system and a Continuous Stirred Tank Reactor (CSTR) system. This approach has the potential to enhance industry understanding of failure mechanisms and to foster the development of preventative and mitigative strategies.

Suggested Citation

  • Wang, Yuchen & Ji, Zuzhen & Cao, Yi & Yang, Shuang-Hua, 2025. "Dynamic risk assessment for process operational safety based on reachability analysis," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
  • Handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006367
    DOI: 10.1016/j.ress.2024.110564
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024006367
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110564?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.