IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v220y2022ics0951832021007675.html
   My bibliography  Save this article

Development of exact and heuristic optimization methods for safety improvement projects at level crossings under conflicting objectives

Author

Listed:
  • Singh, Prashant
  • Pasha, Junayed
  • Moses, Ren
  • Sobanjo, John
  • Ozguven, Eren E.
  • Dulebenets, Maxim A.

Abstract

A significant number of accidents occur each year at level crossings globally. Substantial efforts are being made by different railway authorities and other stakeholders to prevent accidents by installing various countermeasures at level crossings (e.g., mountable curbs, two-quad gates, four-quad gates). However, due to budgetary constraints, it is not possible to deploy countermeasures at all level crossings. Besides, countermeasures have certain effectiveness factors and the associated installation cost. Usually, the cost of the countermeasure increases with its effectiveness. Therefore, it is essential to select the most effective countermeasures at the riskiest level crossings. The implementation of countermeasures at level crossings may lead to certain negative externalities as well. In particular, the deployment of countermeasures can result in a decreased traffic flow, causing traffic delays and adversely affecting the continuity of freight and passenger train movements. This study proposes a multi-objective mathematical model for resource allocation among level crossings, which aims not only to minimize the total hazard severity due to potential accidents but the associated traffic delays as well. Exact and heuristic solution approaches are designed to solve the developed multi-objective model. A set of computational experiments are conducted for the level crossings located in the State of Florida (United States). The results demonstrate superiority of the exact optimization method, as it obtained optimal Pareto Fronts within acceptable computational time. Moreover, a number of sensitivity analyses are conducted to showcase certain managerial insights that would be of interest to railway authorities and other stakeholders involved in level crossing safety improvements.

Suggested Citation

  • Singh, Prashant & Pasha, Junayed & Moses, Ren & Sobanjo, John & Ozguven, Eren E. & Dulebenets, Maxim A., 2022. "Development of exact and heuristic optimization methods for safety improvement projects at level crossings under conflicting objectives," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
  • Handle: RePEc:eee:reensy:v:220:y:2022:i:c:s0951832021007675
    DOI: 10.1016/j.ress.2021.108296
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021007675
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.108296?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Silmon, Joe & Roberts, Clive, 2010. "Using functional analysis to determine the requirements for changes to critical systems: Railway level crossing case study," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 216-225.
    2. Junayed Pasha & Maxim A. Dulebenets & Olumide F. Abioye & Masoud Kavoosi & Ren Moses & John Sobanjo & Eren E. Ozguven, 2020. "A Comprehensive Assessment of the Existing Accident and Hazard Prediction Models for the Highway-Rail Grade Crossings in the State of Florida," Sustainability, MDPI, vol. 12(10), pages 1-27, May.
    3. He, Zhidong & Navneet, Kumar & van Dam, Wirdmer & Van Mieghem, Piet, 2021. "Robustness assessment of multimodal freight transport networks," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    4. Gao, Lu & Lu, Pan & Ren, Yihao, 2021. "A deep learning approach for imbalanced crash data in predicting highway-rail grade crossings accidents," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    5. Liu, Jintao & Schmid, Felix & Li, Keping & Zheng, Wei, 2021. "A knowledge graph-based approach for exploring railway operational accidents," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    6. Iranitalab, Amirfarrokh & Khattak, Aemal, 2020. "Probabilistic classification of hazardous materials release events in train incidents and cargo tank truck crashes," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    7. Dulebenets, Maxim A., 2018. "A comprehensive multi-objective optimization model for the vessel scheduling problem in liner shipping," International Journal of Production Economics, Elsevier, vol. 196(C), pages 293-318.
    8. Rungskunroch, Panrawee & Jack, Anson & Kaewunruen, Sakdirat, 2021. "Benchmarking on railway safety performance using Bayesian inference, decision tree and petri-net techniques based on long-term accidental data sets," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    9. Zhou, Xiaoyi & Lu, Pan & Zheng, Zijian & Tolliver, Denver & Keramati, Amin, 2020. "Accident Prediction Accuracy Assessment for Highway-Rail Grade Crossings Using Random Forest Algorithm Compared with Decision Tree," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    10. Masoud Kavoosi & Maxim A. Dulebenets & Junayed Pasha & Olumide F. Abioye & Ren Moses & John Sobanjo & Eren E. Ozguven, 2020. "Development of Algorithms for Effective Resource Allocation among Highway–Rail Grade Crossings: A Case Study for the State of Florida," Energies, MDPI, vol. 13(6), pages 1-28, March.
    11. Huang, Wencheng & Zhang, Yue & Kou, Xingyi & Yin, Dezhi & Mi, Rongwei & Li, Linqing, 2020. "Railway dangerous goods transportation system risk analysis: An Interpretive Structural Modeling and Bayesian Network combining approach," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    12. Wu, Daohua & Zheng, Wei, 2018. "Formal model-based quantitative safety analysis using timed Coloured Petri Nets," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 62-79.
    13. Nguyen-Phuoc, Duy Q. & Currie, Graham & De Gruyter, Chris & Young, William, 2017. "New method to estimate local and system-wide effects of level rail crossings on network traffic flow," Journal of Transport Geography, Elsevier, vol. 60(C), pages 89-97.
    14. Prashant Singh & Junayed Pasha & Amir Khorram-Manesh & Krzysztof Goniewicz & Abdolreza Roshani & Maxim A. Dulebenets, 2021. "A Holistic Analysis of Train-Vehicle Accidents at Highway-Rail Grade Crossings in Florida," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    15. Chris De Gruyter & Graham Currie, 2016. "Rail-road crossing impacts: an international synthesis," Transport Reviews, Taylor & Francis Journals, vol. 36(6), pages 793-815, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Wei & Shao, Changzheng & Hu, Bo & Li, Weizhan & Sun, Yue & Xie, Kaigui & Zio, Enrico & Li, Wenyuan, 2023. "A restoration-clustering-decomposition learning framework for aging-related failure rate estimation of distribution transformers," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    2. Song, Chengcheng & Shao, Quan & Zhu, Pei & Dong, Min & Yu, Wenfei, 2023. "An emergency aircraft evacuation simulation considering passenger overtaking and luggage retrieval," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    3. Li, Bokang & Afkhami, Payam & Khayamim, Razieh & Elmi, Zeinab & Moses, Ren & Sobanjo, John & Ozguven, Eren E. & Dulebenets, Maxim A., 2024. "A holistic optimization-based approach for sustainable selection of level crossings for closure with safety, economic, and environmental considerations," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    4. Sk. A. Shezan & Innocent Kamwa & Md. Fatin Ishraque & S. M. Muyeen & Kazi Nazmul Hasan & R. Saidur & Syed Muhammad Rizvi & Md Shafiullah & Fahad A. Al-Sulaiman, 2023. "Evaluation of Different Optimization Techniques and Control Strategies of Hybrid Microgrid: A Review," Energies, MDPI, vol. 16(4), pages 1-30, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Bokang & Afkhami, Payam & Khayamim, Razieh & Elmi, Zeinab & Moses, Ren & Sobanjo, John & Ozguven, Eren E. & Dulebenets, Maxim A., 2024. "A holistic optimization-based approach for sustainable selection of level crossings for closure with safety, economic, and environmental considerations," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    2. Yan, Dongyang & Li, Keping & Zhu, Qiaozhen & Liu, Yanyan, 2023. "A railway accident prevention method based on reinforcement learning – Active preventive strategy by multi-modal data," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    3. Liu, Jintao & Chen, Keyi & Duan, Huayu & Li, Chenling, 2024. "A knowledge graph-based hazard prediction approach for preventing railway operational accidents," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    4. Dindar, Serdar & Kaewunruen, Sakdirat & An, Min, 2022. "A hierarchical Bayesian-based model for hazard analysis of climate effect on failures of railway turnout components," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    5. Gu, Shuang & Li, Keping & Feng, Tao & Yan, Dongyang & Liu, Yanyan, 2022. "The prediction of potential risk path in railway traffic events," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    6. Vivek, Adheesh Kumar & Gupta, Somya & Khan, Tathagatha & Mohapatra, Smruti Sourava, 2024. "Strategies to mitigate safety and associated problems at gated rail road grade crossing: A structural equation modelling approach," Transport Policy, Elsevier, vol. 146(C), pages 19-30.
    7. Zhang, Hengqi & Geng, Hua, 2023. "A methodology to identify and assess high-risk causes for electrical personal accidents based on directed weighted CN," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    8. Chen, Xiyuan & Ma, Xiaoping & Jia, Limin & Zhang, Zhipeng & Chen, Fei & Wang, Ruojin, 2024. "Causative analysis of freight railway accident in specific scenes using a data-driven Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    9. Rungskunroch, Panrawee & Jack, Anson & Kaewunruen, Sakdirat, 2021. "Benchmarking on railway safety performance using Bayesian inference, decision tree and petri-net techniques based on long-term accidental data sets," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    10. Gao, Lu & Lu, Pan & Ren, Yihao, 2021. "A deep learning approach for imbalanced crash data in predicting highway-rail grade crossings accidents," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    11. Shi, Lingyuan & Yang, Xin & Chang, Ximing & Wu, Jianjun & Sun, Huijun, 2023. "An improved density peaks clustering algorithm based on k nearest neighbors and turning point for evaluating the severity of railway accidents," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    12. Anna Dolinayova & Vladislav Zitricky & Lenka Cerna, 2020. "Decision-Making Process in the Case of Insufficient Rail Capacity," Sustainability, MDPI, vol. 12(12), pages 1-21, June.
    13. Prashant Singh & Junayed Pasha & Amir Khorram-Manesh & Krzysztof Goniewicz & Abdolreza Roshani & Maxim A. Dulebenets, 2021. "A Holistic Analysis of Train-Vehicle Accidents at Highway-Rail Grade Crossings in Florida," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    14. Amini, Mostafa & Bagheri, Ali & Delen, Dursun, 2022. "Discovering injury severity risk factors in automobile crashes: A hybrid explainable AI framework for decision support," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    15. Liu, Yanyan & Li, Keping & Yan, Dongyang, 2024. "Quantification analysis of potential risk in railway accidents: A new random walk based approach," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    16. Hou, Hui & Liu, Chao & Wei, Ruizeng & He, Huan & Wang, Lei & Li, Weibo, 2023. "Outage duration prediction under typhoon disaster with stacking ensemble learning," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    17. Laihao Ma & Xiaoxue Ma & Jingwen Zhang & Qing Yang & Kai Wei, 2021. "Identifying the Weaker Function Links in the Hazardous Chemicals Road Transportation System in China," IJERPH, MDPI, vol. 18(13), pages 1-17, July.
    18. Quintanilha, Igor M. & Elias, Vitor R.M. & da Silva, Felipe B. & Fonini, Pedro A.M. & da Silva, Eduardo A.B. & Netto, Sergio L. & Apolinário, José A. & de Campos, Marcello L.R. & Martins, Wallace A., 2021. "A fault detector/classifier for closed-ring power generators using machine learning," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    19. Kurmankhojayev, Daniyar & Li, Guoyuan & Chen, Anthony, 2024. "Link criticality index: Refinement, framework extension, and a case study," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    20. Junayed Pasha & Maxim A. Dulebenets & Olumide F. Abioye & Masoud Kavoosi & Ren Moses & John Sobanjo & Eren E. Ozguven, 2020. "A Comprehensive Assessment of the Existing Accident and Hazard Prediction Models for the Highway-Rail Grade Crossings in the State of Florida," Sustainability, MDPI, vol. 12(10), pages 1-27, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:220:y:2022:i:c:s0951832021007675. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.